Description: If two points lie on the opposite side of a line D , they are not on the same half-plane. Theorem 9.9 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ishpg.p | |- P = ( Base ` G ) | |
| ishpg.i | |- I = ( Itv ` G ) | ||
| ishpg.l | |- L = ( LineG ` G ) | ||
| ishpg.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | ||
| ishpg.g | |- ( ph -> G e. TarskiG ) | ||
| ishpg.d | |- ( ph -> D e. ran L ) | ||
| hpgbr.a | |- ( ph -> A e. P ) | ||
| hpgbr.b | |- ( ph -> B e. P ) | ||
| lnoppnhpg.1 | |- ( ph -> A O B ) | ||
| Assertion | lnoppnhpg | |- ( ph -> -. A ( ( hpG ` G ) ` D ) B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishpg.p | |- P = ( Base ` G ) | |
| 2 | ishpg.i | |- I = ( Itv ` G ) | |
| 3 | ishpg.l | |- L = ( LineG ` G ) | |
| 4 | ishpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | |
| 5 | ishpg.g | |- ( ph -> G e. TarskiG ) | |
| 6 | ishpg.d | |- ( ph -> D e. ran L ) | |
| 7 | hpgbr.a | |- ( ph -> A e. P ) | |
| 8 | hpgbr.b | |- ( ph -> B e. P ) | |
| 9 | lnoppnhpg.1 | |- ( ph -> A O B ) | |
| 10 | eqid | |- ( dist ` G ) = ( dist ` G ) | |
| 11 | 1 10 2 4 3 6 5 8 | oppnid | |- ( ph -> -. B O B ) | 
| 12 | 1 2 3 4 5 6 7 8 8 9 | lnopp2hpgb | |- ( ph -> ( B O B <-> A ( ( hpG ` G ) ` D ) B ) ) | 
| 13 | 11 12 | mtbid | |- ( ph -> -. A ( ( hpG ` G ) ` D ) B ) |