Metamath Proof Explorer


Theorem lnoppnhpg

Description: If two points lie on the opposite side of a line D , they are not on the same half-plane. Theorem 9.9 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p
|- P = ( Base ` G )
ishpg.i
|- I = ( Itv ` G )
ishpg.l
|- L = ( LineG ` G )
ishpg.o
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
ishpg.g
|- ( ph -> G e. TarskiG )
ishpg.d
|- ( ph -> D e. ran L )
hpgbr.a
|- ( ph -> A e. P )
hpgbr.b
|- ( ph -> B e. P )
lnoppnhpg.1
|- ( ph -> A O B )
Assertion lnoppnhpg
|- ( ph -> -. A ( ( hpG ` G ) ` D ) B )

Proof

Step Hyp Ref Expression
1 ishpg.p
 |-  P = ( Base ` G )
2 ishpg.i
 |-  I = ( Itv ` G )
3 ishpg.l
 |-  L = ( LineG ` G )
4 ishpg.o
 |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) }
5 ishpg.g
 |-  ( ph -> G e. TarskiG )
6 ishpg.d
 |-  ( ph -> D e. ran L )
7 hpgbr.a
 |-  ( ph -> A e. P )
8 hpgbr.b
 |-  ( ph -> B e. P )
9 lnoppnhpg.1
 |-  ( ph -> A O B )
10 eqid
 |-  ( dist ` G ) = ( dist ` G )
11 1 10 2 4 3 6 5 8 oppnid
 |-  ( ph -> -. B O B )
12 1 2 3 4 5 6 7 8 8 9 lnopp2hpgb
 |-  ( ph -> ( B O B <-> A ( ( hpG ` G ) ` D ) B ) )
13 11 12 mtbid
 |-  ( ph -> -. A ( ( hpG ` G ) ` D ) B )