Description: If two points lie on the opposite side of a line D , they are not on the same half-plane. Theorem 9.9 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishpg.p | |- P = ( Base ` G ) |
|
ishpg.i | |- I = ( Itv ` G ) |
||
ishpg.l | |- L = ( LineG ` G ) |
||
ishpg.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
||
ishpg.g | |- ( ph -> G e. TarskiG ) |
||
ishpg.d | |- ( ph -> D e. ran L ) |
||
hpgbr.a | |- ( ph -> A e. P ) |
||
hpgbr.b | |- ( ph -> B e. P ) |
||
lnoppnhpg.1 | |- ( ph -> A O B ) |
||
Assertion | lnoppnhpg | |- ( ph -> -. A ( ( hpG ` G ) ` D ) B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | |- P = ( Base ` G ) |
|
2 | ishpg.i | |- I = ( Itv ` G ) |
|
3 | ishpg.l | |- L = ( LineG ` G ) |
|
4 | ishpg.o | |- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
|
5 | ishpg.g | |- ( ph -> G e. TarskiG ) |
|
6 | ishpg.d | |- ( ph -> D e. ran L ) |
|
7 | hpgbr.a | |- ( ph -> A e. P ) |
|
8 | hpgbr.b | |- ( ph -> B e. P ) |
|
9 | lnoppnhpg.1 | |- ( ph -> A O B ) |
|
10 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
11 | 1 10 2 4 3 6 5 8 | oppnid | |- ( ph -> -. B O B ) |
12 | 1 2 3 4 5 6 7 8 8 9 | lnopp2hpgb | |- ( ph -> ( B O B <-> A ( ( hpG ` G ) ` D ) B ) ) |
13 | 11 12 | mtbid | |- ( ph -> -. A ( ( hpG ` G ) ` D ) B ) |