Metamath Proof Explorer


Theorem lnoppnhpg

Description: If two points lie on the opposite side of a line D , they are not on the same half-plane. Theorem 9.9 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P=BaseG
ishpg.i I=ItvG
ishpg.l L=Line𝒢G
ishpg.o O=ab|aPDbPDtDtaIb
ishpg.g φG𝒢Tarski
ishpg.d φDranL
hpgbr.a φAP
hpgbr.b φBP
lnoppnhpg.1 φAOB
Assertion lnoppnhpg φ¬Ahp𝒢GDB

Proof

Step Hyp Ref Expression
1 ishpg.p P=BaseG
2 ishpg.i I=ItvG
3 ishpg.l L=Line𝒢G
4 ishpg.o O=ab|aPDbPDtDtaIb
5 ishpg.g φG𝒢Tarski
6 ishpg.d φDranL
7 hpgbr.a φAP
8 hpgbr.b φBP
9 lnoppnhpg.1 φAOB
10 eqid distG=distG
11 1 10 2 4 3 6 5 8 oppnid φ¬BOB
12 1 2 3 4 5 6 7 8 8 9 lnopp2hpgb φBOBAhp𝒢GDB
13 11 12 mtbid φ¬Ahp𝒢GDB