Database ELEMENTARY GEOMETRY Tarskian Geometry Half-planes lnoppnhpg  
				
		 
		
			
		 
		Description:   If two points lie on the opposite side of a line D  , they are not on
       the same half-plane.  Theorem 9.9 of Schwabhauser  p. 72.  (Contributed by Thierry Arnoux , 4-Mar-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ishpg.p ⊢  𝑃   =  ( Base ‘ 𝐺  )  
					
						ishpg.i ⊢  𝐼   =  ( Itv ‘ 𝐺  )  
					
						ishpg.l ⊢  𝐿   =  ( LineG ‘ 𝐺  )  
					
						ishpg.o ⊢  𝑂   =  { 〈 𝑎  ,  𝑏  〉  ∣  ( ( 𝑎   ∈  ( 𝑃   ∖  𝐷  )  ∧  𝑏   ∈  ( 𝑃   ∖  𝐷  ) )  ∧  ∃ 𝑡   ∈  𝐷  𝑡   ∈  ( 𝑎  𝐼  𝑏  ) ) }  
					
						ishpg.g ⊢  ( 𝜑   →  𝐺   ∈  TarskiG )  
					
						ishpg.d ⊢  ( 𝜑   →  𝐷   ∈  ran  𝐿  )  
					
						hpgbr.a ⊢  ( 𝜑   →  𝐴   ∈  𝑃  )  
					
						hpgbr.b ⊢  ( 𝜑   →  𝐵   ∈  𝑃  )  
					
						lnoppnhpg.1 ⊢  ( 𝜑   →  𝐴  𝑂  𝐵  )  
				
					Assertion 
					lnoppnhpg ⊢   ( 𝜑   →  ¬  𝐴  ( ( hpG ‘ 𝐺  ) ‘ 𝐷  ) 𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ishpg.p ⊢  𝑃   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							ishpg.i ⊢  𝐼   =  ( Itv ‘ 𝐺  )  
						
							3 
								
							 
							ishpg.l ⊢  𝐿   =  ( LineG ‘ 𝐺  )  
						
							4 
								
							 
							ishpg.o ⊢  𝑂   =  { 〈 𝑎  ,  𝑏  〉  ∣  ( ( 𝑎   ∈  ( 𝑃   ∖  𝐷  )  ∧  𝑏   ∈  ( 𝑃   ∖  𝐷  ) )  ∧  ∃ 𝑡   ∈  𝐷  𝑡   ∈  ( 𝑎  𝐼  𝑏  ) ) }  
						
							5 
								
							 
							ishpg.g ⊢  ( 𝜑   →  𝐺   ∈  TarskiG )  
						
							6 
								
							 
							ishpg.d ⊢  ( 𝜑   →  𝐷   ∈  ran  𝐿  )  
						
							7 
								
							 
							hpgbr.a ⊢  ( 𝜑   →  𝐴   ∈  𝑃  )  
						
							8 
								
							 
							hpgbr.b ⊢  ( 𝜑   →  𝐵   ∈  𝑃  )  
						
							9 
								
							 
							lnoppnhpg.1 ⊢  ( 𝜑   →  𝐴  𝑂  𝐵  )  
						
							10 
								
							 
							eqid ⊢  ( dist ‘ 𝐺  )  =  ( dist ‘ 𝐺  )  
						
							11 
								1  10  2  4  3  6  5  8 
							 
							oppnid ⊢  ( 𝜑   →  ¬  𝐵  𝑂  𝐵  )  
						
							12 
								1  2  3  4  5  6  7  8  8  9 
							 
							lnopp2hpgb ⊢  ( 𝜑   →  ( 𝐵  𝑂  𝐵   ↔  𝐴  ( ( hpG ‘ 𝐺  ) ‘ 𝐷  ) 𝐵  ) )  
						
							13 
								11  12 
							 
							mtbid ⊢  ( 𝜑   →  ¬  𝐴  ( ( hpG ‘ 𝐺  ) ‘ 𝐷  ) 𝐵  )