Metamath Proof Explorer


Theorem lnoppnhpg

Description: If two points lie on the opposite side of a line D , they are not on the same half-plane. Theorem 9.9 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p 𝑃 = ( Base ‘ 𝐺 )
ishpg.i 𝐼 = ( Itv ‘ 𝐺 )
ishpg.l 𝐿 = ( LineG ‘ 𝐺 )
ishpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
ishpg.g ( 𝜑𝐺 ∈ TarskiG )
ishpg.d ( 𝜑𝐷 ∈ ran 𝐿 )
hpgbr.a ( 𝜑𝐴𝑃 )
hpgbr.b ( 𝜑𝐵𝑃 )
lnoppnhpg.1 ( 𝜑𝐴 𝑂 𝐵 )
Assertion lnoppnhpg ( 𝜑 → ¬ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )

Proof

Step Hyp Ref Expression
1 ishpg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishpg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishpg.l 𝐿 = ( LineG ‘ 𝐺 )
4 ishpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 ishpg.g ( 𝜑𝐺 ∈ TarskiG )
6 ishpg.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 hpgbr.a ( 𝜑𝐴𝑃 )
8 hpgbr.b ( 𝜑𝐵𝑃 )
9 lnoppnhpg.1 ( 𝜑𝐴 𝑂 𝐵 )
10 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
11 1 10 2 4 3 6 5 8 oppnid ( 𝜑 → ¬ 𝐵 𝑂 𝐵 )
12 1 2 3 4 5 6 7 8 8 9 lnopp2hpgb ( 𝜑 → ( 𝐵 𝑂 𝐵𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) )
13 11 12 mtbid ( 𝜑 → ¬ 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )