Step |
Hyp |
Ref |
Expression |
1 |
|
ltnle |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. B <_ A ) ) |
2 |
|
leloe |
|- ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> ( B < A \/ B = A ) ) ) |
3 |
2
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B <_ A <-> ( B < A \/ B = A ) ) ) |
4 |
3
|
notbid |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A <-> -. ( B < A \/ B = A ) ) ) |
5 |
|
ioran |
|- ( -. ( B < A \/ B = A ) <-> ( -. B < A /\ -. B = A ) ) |
6 |
5
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> ( -. ( B < A \/ B = A ) <-> ( -. B < A /\ -. B = A ) ) ) |
7 |
1 4 6
|
3bitrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( -. B < A /\ -. B = A ) ) ) |