Metamath Proof Explorer


Theorem ltnltne

Description: Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion ltnltne
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( -. B < A /\ -. B = A ) ) )

Proof

Step Hyp Ref Expression
1 ltnle
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. B <_ A ) )
2 leloe
 |-  ( ( B e. RR /\ A e. RR ) -> ( B <_ A <-> ( B < A \/ B = A ) ) )
3 2 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> ( B <_ A <-> ( B < A \/ B = A ) ) )
4 3 notbid
 |-  ( ( A e. RR /\ B e. RR ) -> ( -. B <_ A <-> -. ( B < A \/ B = A ) ) )
5 ioran
 |-  ( -. ( B < A \/ B = A ) <-> ( -. B < A /\ -. B = A ) )
6 5 a1i
 |-  ( ( A e. RR /\ B e. RR ) -> ( -. ( B < A \/ B = A ) <-> ( -. B < A /\ -. B = A ) ) )
7 1 4 6 3bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( -. B < A /\ -. B = A ) ) )