Metamath Proof Explorer


Theorem ltnltne

Description: Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion ltnltne ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ltnle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
2 leloe ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ↔ ( 𝐵 < 𝐴𝐵 = 𝐴 ) ) )
3 2 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵𝐴 ↔ ( 𝐵 < 𝐴𝐵 = 𝐴 ) ) )
4 3 notbid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵𝐴 ↔ ¬ ( 𝐵 < 𝐴𝐵 = 𝐴 ) ) )
5 ioran ( ¬ ( 𝐵 < 𝐴𝐵 = 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) )
6 5 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ ( 𝐵 < 𝐴𝐵 = 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) )
7 1 4 6 3bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) )