Description: Variant of trichotomy law for 'less than'. (Contributed by Alexander van der Vekens, 8-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ltnltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) | |
2 | leloe | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 < 𝐴 ∨ 𝐵 = 𝐴 ) ) ) | |
3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 < 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
4 | 3 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 ≤ 𝐴 ↔ ¬ ( 𝐵 < 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
5 | ioran | ⊢ ( ¬ ( 𝐵 < 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) | |
6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ ( 𝐵 < 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) ) |
7 | 1 4 6 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ¬ 𝐵 < 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) ) |