| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lublem.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | lublem.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | lublem.u |  |-  U = ( lub ` K ) | 
						
							| 4 |  | clatl |  |-  ( K e. CLat -> K e. Lat ) | 
						
							| 5 |  | ssel |  |-  ( S C_ B -> ( X e. S -> X e. B ) ) | 
						
							| 6 | 5 | impcom |  |-  ( ( X e. S /\ S C_ B ) -> X e. B ) | 
						
							| 7 | 1 3 | lubsn |  |-  ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) | 
						
							| 8 | 4 6 7 | syl2an |  |-  ( ( K e. CLat /\ ( X e. S /\ S C_ B ) ) -> ( U ` { X } ) = X ) | 
						
							| 9 | 8 | 3impb |  |-  ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) = X ) | 
						
							| 10 |  | snssi |  |-  ( X e. S -> { X } C_ S ) | 
						
							| 11 | 1 2 3 | lubss |  |-  ( ( K e. CLat /\ S C_ B /\ { X } C_ S ) -> ( U ` { X } ) .<_ ( U ` S ) ) | 
						
							| 12 | 10 11 | syl3an3 |  |-  ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( U ` { X } ) .<_ ( U ` S ) ) | 
						
							| 13 | 12 | 3com23 |  |-  ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) .<_ ( U ` S ) ) | 
						
							| 14 | 9 13 | eqbrtrrd |  |-  ( ( K e. CLat /\ X e. S /\ S C_ B ) -> X .<_ ( U ` S ) ) |