Description: The seventh Mersenne number M_7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | m7prm | |- ( ( 2 ^ 7 ) - 1 ) e. Prime |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 | |- 1 e. NN0 |
|
2 | 2nn0 | |- 2 e. NN0 |
|
3 | 1 2 | deccl | |- ; 1 2 e. NN0 |
4 | 8nn0 | |- 8 e. NN0 |
|
5 | 2exp7 | |- ( 2 ^ 7 ) = ; ; 1 2 8 |
|
6 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
7 | eqid | |- ; 1 2 = ; 1 2 |
|
8 | 1 2 6 7 | decsuc | |- ( ; 1 2 + 1 ) = ; 1 3 |
9 | 7p1e8 | |- ( 7 + 1 ) = 8 |
|
10 | 8cn | |- 8 e. CC |
|
11 | ax-1cn | |- 1 e. CC |
|
12 | 7cn | |- 7 e. CC |
|
13 | 10 11 12 | subadd2i | |- ( ( 8 - 1 ) = 7 <-> ( 7 + 1 ) = 8 ) |
14 | 9 13 | mpbir | |- ( 8 - 1 ) = 7 |
15 | 3 4 1 5 8 14 | decsubi | |- ( ( 2 ^ 7 ) - 1 ) = ; ; 1 2 7 |
16 | 127prm | |- ; ; 1 2 7 e. Prime |
|
17 | 15 16 | eqeltri | |- ( ( 2 ^ 7 ) - 1 ) e. Prime |