Metamath Proof Explorer
Description: The seventh Mersenne number M_7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m7prm |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn0 |
|
| 2 |
|
2nn0 |
|
| 3 |
1 2
|
deccl |
|
| 4 |
|
8nn0 |
|
| 5 |
|
2exp7 |
|
| 6 |
|
2p1e3 |
|
| 7 |
|
eqid |
|
| 8 |
1 2 6 7
|
decsuc |
|
| 9 |
|
7p1e8 |
|
| 10 |
|
8cn |
|
| 11 |
|
ax-1cn |
|
| 12 |
|
7cn |
|
| 13 |
10 11 12
|
subadd2i |
|
| 14 |
9 13
|
mpbir |
|
| 15 |
3 4 1 5 8 14
|
decsubi |
|
| 16 |
|
127prm |
|
| 17 |
15 16
|
eqeltri |
|