Metamath Proof Explorer
Description: The seventh Mersenne number M_7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m7prm |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
|
2 |
|
2nn0 |
|
3 |
1 2
|
deccl |
|
4 |
|
8nn0 |
|
5 |
|
2exp7 |
|
6 |
|
2p1e3 |
|
7 |
|
eqid |
|
8 |
1 2 6 7
|
decsuc |
|
9 |
|
7p1e8 |
|
10 |
|
8cn |
|
11 |
|
ax-1cn |
|
12 |
|
7cn |
|
13 |
10 11 12
|
subadd2i |
|
14 |
9 13
|
mpbir |
|
15 |
3 4 1 5 8 14
|
decsubi |
|
16 |
|
127prm |
|
17 |
15 16
|
eqeltri |
|