Metamath Proof Explorer
		
		
		
		Description:  The seventh Mersenne number M_7 = 127 is a prime number.  (Contributed by AV, 18-Aug-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | m7prm |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 |  | 
						
							| 2 |  | 2nn0 |  | 
						
							| 3 | 1 2 | deccl |  | 
						
							| 4 |  | 8nn0 |  | 
						
							| 5 |  | 2exp7 |  | 
						
							| 6 |  | 2p1e3 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 1 2 6 7 | decsuc |  | 
						
							| 9 |  | 7p1e8 |  | 
						
							| 10 |  | 8cn |  | 
						
							| 11 |  | ax-1cn |  | 
						
							| 12 |  | 7cn |  | 
						
							| 13 | 10 11 12 | subadd2i |  | 
						
							| 14 | 9 13 | mpbir |  | 
						
							| 15 | 3 4 1 5 8 14 | decsubi |  | 
						
							| 16 |  | 127prm |  | 
						
							| 17 | 15 16 | eqeltri |  |