Description: The seventh Mersenne number M_7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m7prm | ⊢ ( ( 2 ↑ 7 ) − 1 ) ∈ ℙ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 3 | 1 2 | deccl | ⊢ ; 1 2 ∈ ℕ0 | 
| 4 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 5 | 2exp7 | ⊢ ( 2 ↑ 7 ) = ; ; 1 2 8 | |
| 6 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 7 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 8 | 1 2 6 7 | decsuc | ⊢ ( ; 1 2 + 1 ) = ; 1 3 | 
| 9 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
| 10 | 8cn | ⊢ 8 ∈ ℂ | |
| 11 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 12 | 7cn | ⊢ 7 ∈ ℂ | |
| 13 | 10 11 12 | subadd2i | ⊢ ( ( 8 − 1 ) = 7 ↔ ( 7 + 1 ) = 8 ) | 
| 14 | 9 13 | mpbir | ⊢ ( 8 − 1 ) = 7 | 
| 15 | 3 4 1 5 8 14 | decsubi | ⊢ ( ( 2 ↑ 7 ) − 1 ) = ; ; 1 2 7 | 
| 16 | 127prm | ⊢ ; ; 1 2 7 ∈ ℙ | |
| 17 | 15 16 | eqeltri | ⊢ ( ( 2 ↑ 7 ) − 1 ) ∈ ℙ |