Metamath Proof Explorer


Theorem m7prm

Description: The seventh Mersenne number M_7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021)

Ref Expression
Assertion m7prm ( ( 2 ↑ 7 ) − 1 ) ∈ ℙ

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 2nn0 2 ∈ ℕ0
3 1 2 deccl 1 2 ∈ ℕ0
4 8nn0 8 ∈ ℕ0
5 2exp7 ( 2 ↑ 7 ) = 1 2 8
6 2p1e3 ( 2 + 1 ) = 3
7 eqid 1 2 = 1 2
8 1 2 6 7 decsuc ( 1 2 + 1 ) = 1 3
9 7p1e8 ( 7 + 1 ) = 8
10 8cn 8 ∈ ℂ
11 ax-1cn 1 ∈ ℂ
12 7cn 7 ∈ ℂ
13 10 11 12 subadd2i ( ( 8 − 1 ) = 7 ↔ ( 7 + 1 ) = 8 )
14 9 13 mpbir ( 8 − 1 ) = 7
15 3 4 1 5 8 14 decsubi ( ( 2 ↑ 7 ) − 1 ) = 1 2 7
16 127prm 1 2 7 ∈ ℙ
17 15 16 eqeltri ( ( 2 ↑ 7 ) − 1 ) ∈ ℙ