Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
3 |
1 2
|
deccl |
⊢ ; 1 2 ∈ ℕ0 |
4 |
|
7nn |
⊢ 7 ∈ ℕ |
5 |
3 4
|
decnncl |
⊢ ; ; 1 2 7 ∈ ℕ |
6 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
7 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
8 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
9 |
|
1lt8 |
⊢ 1 < 8 |
10 |
|
2lt10 |
⊢ 2 < ; 1 0 |
11 |
|
7lt10 |
⊢ 7 < ; 1 0 |
12 |
1 6 2 7 8 1 9 10 11
|
3decltc |
⊢ ; ; 1 2 7 < ; ; 8 4 1 |
13 |
|
2nn |
⊢ 2 ∈ ℕ |
14 |
1 13
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
15 |
|
1lt10 |
⊢ 1 < ; 1 0 |
16 |
14 8 1 15
|
declti |
⊢ 1 < ; ; 1 2 7 |
17 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
18 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
19 |
|
df-7 |
⊢ 7 = ( 6 + 1 ) |
20 |
3 17 18 19
|
dec2dvds |
⊢ ¬ 2 ∥ ; ; 1 2 7 |
21 |
|
3nn |
⊢ 3 ∈ ℕ |
22 |
|
1nn |
⊢ 1 ∈ ℕ |
23 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
24 |
23
|
oveq1i |
⊢ ( ( 3 · 3 ) + 1 ) = ( 9 + 1 ) |
25 |
|
9p1e10 |
⊢ ( 9 + 1 ) = ; 1 0 |
26 |
24 25
|
eqtri |
⊢ ( ( 3 · 3 ) + 1 ) = ; 1 0 |
27 |
|
1lt3 |
⊢ 1 < 3 |
28 |
21 17 22 26 27
|
ndvdsi |
⊢ ¬ 3 ∥ ; 1 0 |
29 |
1 2 8
|
3dvds2dec |
⊢ ( 3 ∥ ; ; 1 2 7 ↔ 3 ∥ ( ( 1 + 2 ) + 7 ) ) |
30 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
31 |
30
|
oveq1i |
⊢ ( ( 1 + 2 ) + 7 ) = ( 3 + 7 ) |
32 |
|
7cn |
⊢ 7 ∈ ℂ |
33 |
|
3cn |
⊢ 3 ∈ ℂ |
34 |
|
7p3e10 |
⊢ ( 7 + 3 ) = ; 1 0 |
35 |
32 33 34
|
addcomli |
⊢ ( 3 + 7 ) = ; 1 0 |
36 |
31 35
|
eqtri |
⊢ ( ( 1 + 2 ) + 7 ) = ; 1 0 |
37 |
36
|
breq2i |
⊢ ( 3 ∥ ( ( 1 + 2 ) + 7 ) ↔ 3 ∥ ; 1 0 ) |
38 |
29 37
|
bitri |
⊢ ( 3 ∥ ; ; 1 2 7 ↔ 3 ∥ ; 1 0 ) |
39 |
28 38
|
mtbir |
⊢ ¬ 3 ∥ ; ; 1 2 7 |
40 |
|
2lt5 |
⊢ 2 < 5 |
41 |
|
5p2e7 |
⊢ ( 5 + 2 ) = 7 |
42 |
3 13 40 41
|
dec5dvds2 |
⊢ ¬ 5 ∥ ; ; 1 2 7 |
43 |
1 6
|
deccl |
⊢ ; 1 8 ∈ ℕ0 |
44 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
45 |
|
eqid |
⊢ ; 1 8 = ; 1 8 |
46 |
1
|
dec0h |
⊢ 1 = ; 0 1 |
47 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
48 |
32
|
mulridi |
⊢ ( 7 · 1 ) = 7 |
49 |
|
5cn |
⊢ 5 ∈ ℂ |
50 |
49
|
addlidi |
⊢ ( 0 + 5 ) = 5 |
51 |
48 50
|
oveq12i |
⊢ ( ( 7 · 1 ) + ( 0 + 5 ) ) = ( 7 + 5 ) |
52 |
|
7p5e12 |
⊢ ( 7 + 5 ) = ; 1 2 |
53 |
51 52
|
eqtri |
⊢ ( ( 7 · 1 ) + ( 0 + 5 ) ) = ; 1 2 |
54 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
55 |
|
8cn |
⊢ 8 ∈ ℂ |
56 |
|
8t7e56 |
⊢ ( 8 · 7 ) = ; 5 6 |
57 |
55 32 56
|
mulcomli |
⊢ ( 7 · 8 ) = ; 5 6 |
58 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
59 |
47 54 1 57 58
|
decaddi |
⊢ ( ( 7 · 8 ) + 1 ) = ; 5 7 |
60 |
1 6 44 1 45 46 8 8 47 53 59
|
decma2c |
⊢ ( ( 7 · ; 1 8 ) + 1 ) = ; ; 1 2 7 |
61 |
|
1lt7 |
⊢ 1 < 7 |
62 |
4 43 22 60 61
|
ndvdsi |
⊢ ¬ 7 ∥ ; ; 1 2 7 |
63 |
1 22
|
decnncl |
⊢ ; 1 1 ∈ ℕ |
64 |
1 1
|
deccl |
⊢ ; 1 1 ∈ ℕ0 |
65 |
|
6nn |
⊢ 6 ∈ ℕ |
66 |
|
eqid |
⊢ ; 1 1 = ; 1 1 |
67 |
54
|
dec0h |
⊢ 6 = ; 0 6 |
68 |
64
|
nn0cni |
⊢ ; 1 1 ∈ ℂ |
69 |
68
|
mulridi |
⊢ ( ; 1 1 · 1 ) = ; 1 1 |
70 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
71 |
70
|
addlidi |
⊢ ( 0 + 1 ) = 1 |
72 |
69 71
|
oveq12i |
⊢ ( ( ; 1 1 · 1 ) + ( 0 + 1 ) ) = ( ; 1 1 + 1 ) |
73 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
74 |
1 1 1 66 73
|
decaddi |
⊢ ( ; 1 1 + 1 ) = ; 1 2 |
75 |
72 74
|
eqtri |
⊢ ( ( ; 1 1 · 1 ) + ( 0 + 1 ) ) = ; 1 2 |
76 |
|
6cn |
⊢ 6 ∈ ℂ |
77 |
76 70 58
|
addcomli |
⊢ ( 1 + 6 ) = 7 |
78 |
1 1 54 69 77
|
decaddi |
⊢ ( ( ; 1 1 · 1 ) + 6 ) = ; 1 7 |
79 |
1 1 44 54 66 67 64 8 1 75 78
|
decma2c |
⊢ ( ( ; 1 1 · ; 1 1 ) + 6 ) = ; ; 1 2 7 |
80 |
|
6lt10 |
⊢ 6 < ; 1 0 |
81 |
22 1 54 80
|
declti |
⊢ 6 < ; 1 1 |
82 |
63 64 65 79 81
|
ndvdsi |
⊢ ¬ ; 1 1 ∥ ; ; 1 2 7 |
83 |
1 21
|
decnncl |
⊢ ; 1 3 ∈ ℕ |
84 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
85 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
86 |
|
eqid |
⊢ ; 1 3 = ; 1 3 |
87 |
|
eqid |
⊢ ; 1 0 = ; 1 0 |
88 |
|
9cn |
⊢ 9 ∈ ℂ |
89 |
88
|
mullidi |
⊢ ( 1 · 9 ) = 9 |
90 |
89 30
|
oveq12i |
⊢ ( ( 1 · 9 ) + ( 1 + 2 ) ) = ( 9 + 3 ) |
91 |
|
9p3e12 |
⊢ ( 9 + 3 ) = ; 1 2 |
92 |
90 91
|
eqtri |
⊢ ( ( 1 · 9 ) + ( 1 + 2 ) ) = ; 1 2 |
93 |
|
9t3e27 |
⊢ ( 9 · 3 ) = ; 2 7 |
94 |
88 33 93
|
mulcomli |
⊢ ( 3 · 9 ) = ; 2 7 |
95 |
32
|
addridi |
⊢ ( 7 + 0 ) = 7 |
96 |
2 8 44 94 95
|
decaddi |
⊢ ( ( 3 · 9 ) + 0 ) = ; 2 7 |
97 |
1 17 1 44 86 87 84 8 2 92 96
|
decmac |
⊢ ( ( ; 1 3 · 9 ) + ; 1 0 ) = ; ; 1 2 7 |
98 |
|
3pos |
⊢ 0 < 3 |
99 |
1 44 21 98
|
declt |
⊢ ; 1 0 < ; 1 3 |
100 |
83 84 85 97 99
|
ndvdsi |
⊢ ¬ ; 1 3 ∥ ; ; 1 2 7 |
101 |
1 4
|
decnncl |
⊢ ; 1 7 ∈ ℕ |
102 |
|
8nn |
⊢ 8 ∈ ℕ |
103 |
|
eqid |
⊢ ; 1 7 = ; 1 7 |
104 |
32
|
mullidi |
⊢ ( 1 · 7 ) = 7 |
105 |
104
|
oveq1i |
⊢ ( ( 1 · 7 ) + 5 ) = ( 7 + 5 ) |
106 |
105 52
|
eqtri |
⊢ ( ( 1 · 7 ) + 5 ) = ; 1 2 |
107 |
|
7t7e49 |
⊢ ( 7 · 7 ) = ; 4 9 |
108 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
109 |
|
9p8e17 |
⊢ ( 9 + 8 ) = ; 1 7 |
110 |
7 84 6 107 108 8 109
|
decaddci |
⊢ ( ( 7 · 7 ) + 8 ) = ; 5 7 |
111 |
1 8 6 103 8 8 47 106 110
|
decrmac |
⊢ ( ( ; 1 7 · 7 ) + 8 ) = ; ; 1 2 7 |
112 |
|
8lt10 |
⊢ 8 < ; 1 0 |
113 |
22 8 6 112
|
declti |
⊢ 8 < ; 1 7 |
114 |
101 8 102 111 113
|
ndvdsi |
⊢ ¬ ; 1 7 ∥ ; ; 1 2 7 |
115 |
|
9nn |
⊢ 9 ∈ ℕ |
116 |
1 115
|
decnncl |
⊢ ; 1 9 ∈ ℕ |
117 |
|
eqid |
⊢ ; 1 9 = ; 1 9 |
118 |
76
|
mullidi |
⊢ ( 1 · 6 ) = 6 |
119 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
120 |
49 70 119
|
addcomli |
⊢ ( 1 + 5 ) = 6 |
121 |
118 120
|
oveq12i |
⊢ ( ( 1 · 6 ) + ( 1 + 5 ) ) = ( 6 + 6 ) |
122 |
|
6p6e12 |
⊢ ( 6 + 6 ) = ; 1 2 |
123 |
121 122
|
eqtri |
⊢ ( ( 1 · 6 ) + ( 1 + 5 ) ) = ; 1 2 |
124 |
|
9t6e54 |
⊢ ( 9 · 6 ) = ; 5 4 |
125 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
126 |
47 7 17 124 125
|
decaddi |
⊢ ( ( 9 · 6 ) + 3 ) = ; 5 7 |
127 |
1 84 1 17 117 86 54 8 47 123 126
|
decmac |
⊢ ( ( ; 1 9 · 6 ) + ; 1 3 ) = ; ; 1 2 7 |
128 |
|
3lt9 |
⊢ 3 < 9 |
129 |
1 17 115 128
|
declt |
⊢ ; 1 3 < ; 1 9 |
130 |
116 54 83 127 129
|
ndvdsi |
⊢ ¬ ; 1 9 ∥ ; ; 1 2 7 |
131 |
2 21
|
decnncl |
⊢ ; 2 3 ∈ ℕ |
132 |
|
eqid |
⊢ ; 2 3 = ; 2 3 |
133 |
|
eqid |
⊢ ; 1 2 = ; 1 2 |
134 |
|
2cn |
⊢ 2 ∈ ℂ |
135 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
136 |
49 134 135
|
mulcomli |
⊢ ( 2 · 5 ) = ; 1 0 |
137 |
136 73
|
oveq12i |
⊢ ( ( 2 · 5 ) + ( 1 + 1 ) ) = ( ; 1 0 + 2 ) |
138 |
|
dec10p |
⊢ ( ; 1 0 + 2 ) = ; 1 2 |
139 |
137 138
|
eqtri |
⊢ ( ( 2 · 5 ) + ( 1 + 1 ) ) = ; 1 2 |
140 |
|
5t3e15 |
⊢ ( 5 · 3 ) = ; 1 5 |
141 |
49 33 140
|
mulcomli |
⊢ ( 3 · 5 ) = ; 1 5 |
142 |
1 47 2 141 41
|
decaddi |
⊢ ( ( 3 · 5 ) + 2 ) = ; 1 7 |
143 |
2 17 1 2 132 133 47 8 1 139 142
|
decmac |
⊢ ( ( ; 2 3 · 5 ) + ; 1 2 ) = ; ; 1 2 7 |
144 |
|
1lt2 |
⊢ 1 < 2 |
145 |
1 2 2 17 10 144
|
decltc |
⊢ ; 1 2 < ; 2 3 |
146 |
131 47 14 143 145
|
ndvdsi |
⊢ ¬ ; 2 3 ∥ ; ; 1 2 7 |
147 |
5 12 16 20 39 42 62 82 100 114 130 146
|
prmlem2 |
⊢ ; ; 1 2 7 ∈ ℙ |