Metamath Proof Explorer


Theorem 127prm

Description: 127 is a prime number. (Contributed by AV, 16-Aug-2021) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Assertion 127prm 127

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 2nn0 2 0
3 1 2 deccl 12 0
4 7nn 7
5 3 4 decnncl 127
6 8nn0 8 0
7 4nn0 4 0
8 7nn0 7 0
9 1lt8 1 < 8
10 2lt10 2 < 10
11 7lt10 7 < 10
12 1 6 2 7 8 1 9 10 11 3decltc 127 < 841
13 2nn 2
14 1 13 decnncl 12
15 1lt10 1 < 10
16 14 8 1 15 declti 1 < 127
17 3nn0 3 0
18 3t2e6 3 2 = 6
19 df-7 7 = 6 + 1
20 3 17 18 19 dec2dvds ¬ 2 127
21 3nn 3
22 1nn 1
23 3t3e9 3 3 = 9
24 23 oveq1i 3 3 + 1 = 9 + 1
25 9p1e10 9 + 1 = 10
26 24 25 eqtri 3 3 + 1 = 10
27 1lt3 1 < 3
28 21 17 22 26 27 ndvdsi ¬ 3 10
29 1 2 8 3dvds2dec 3 127 3 1 + 2 + 7
30 1p2e3 1 + 2 = 3
31 30 oveq1i 1 + 2 + 7 = 3 + 7
32 7cn 7
33 3cn 3
34 7p3e10 7 + 3 = 10
35 32 33 34 addcomli 3 + 7 = 10
36 31 35 eqtri 1 + 2 + 7 = 10
37 36 breq2i 3 1 + 2 + 7 3 10
38 29 37 bitri 3 127 3 10
39 28 38 mtbir ¬ 3 127
40 2lt5 2 < 5
41 5p2e7 5 + 2 = 7
42 3 13 40 41 dec5dvds2 ¬ 5 127
43 1 6 deccl 18 0
44 0nn0 0 0
45 eqid 18 = 18
46 1 dec0h 1 = 01
47 5nn0 5 0
48 32 mulid1i 7 1 = 7
49 5cn 5
50 49 addid2i 0 + 5 = 5
51 48 50 oveq12i 7 1 + 0 + 5 = 7 + 5
52 7p5e12 7 + 5 = 12
53 51 52 eqtri 7 1 + 0 + 5 = 12
54 6nn0 6 0
55 8cn 8
56 8t7e56 8 7 = 56
57 55 32 56 mulcomli 7 8 = 56
58 6p1e7 6 + 1 = 7
59 47 54 1 57 58 decaddi 7 8 + 1 = 57
60 1 6 44 1 45 46 8 8 47 53 59 decma2c 7 18 + 1 = 127
61 1lt7 1 < 7
62 4 43 22 60 61 ndvdsi ¬ 7 127
63 1 22 decnncl 11
64 1 1 deccl 11 0
65 6nn 6
66 eqid 11 = 11
67 54 dec0h 6 = 06
68 64 nn0cni 11
69 68 mulid1i 11 1 = 11
70 ax-1cn 1
71 70 addid2i 0 + 1 = 1
72 69 71 oveq12i 11 1 + 0 + 1 = 11 + 1
73 1p1e2 1 + 1 = 2
74 1 1 1 66 73 decaddi 11 + 1 = 12
75 72 74 eqtri 11 1 + 0 + 1 = 12
76 6cn 6
77 76 70 58 addcomli 1 + 6 = 7
78 1 1 54 69 77 decaddi 11 1 + 6 = 17
79 1 1 44 54 66 67 64 8 1 75 78 decma2c 11 11 + 6 = 127
80 6lt10 6 < 10
81 22 1 54 80 declti 6 < 11
82 63 64 65 79 81 ndvdsi ¬ 11 127
83 1 21 decnncl 13
84 9nn0 9 0
85 10nn 10
86 eqid 13 = 13
87 eqid 10 = 10
88 9cn 9
89 88 mulid2i 1 9 = 9
90 89 30 oveq12i 1 9 + 1 + 2 = 9 + 3
91 9p3e12 9 + 3 = 12
92 90 91 eqtri 1 9 + 1 + 2 = 12
93 9t3e27 9 3 = 27
94 88 33 93 mulcomli 3 9 = 27
95 32 addid1i 7 + 0 = 7
96 2 8 44 94 95 decaddi 3 9 + 0 = 27
97 1 17 1 44 86 87 84 8 2 92 96 decmac 13 9 + 10 = 127
98 3pos 0 < 3
99 1 44 21 98 declt 10 < 13
100 83 84 85 97 99 ndvdsi ¬ 13 127
101 1 4 decnncl 17
102 8nn 8
103 eqid 17 = 17
104 32 mulid2i 1 7 = 7
105 104 oveq1i 1 7 + 5 = 7 + 5
106 105 52 eqtri 1 7 + 5 = 12
107 7t7e49 7 7 = 49
108 4p1e5 4 + 1 = 5
109 9p8e17 9 + 8 = 17
110 7 84 6 107 108 8 109 decaddci 7 7 + 8 = 57
111 1 8 6 103 8 8 47 106 110 decrmac 17 7 + 8 = 127
112 8lt10 8 < 10
113 22 8 6 112 declti 8 < 17
114 101 8 102 111 113 ndvdsi ¬ 17 127
115 9nn 9
116 1 115 decnncl 19
117 eqid 19 = 19
118 76 mulid2i 1 6 = 6
119 5p1e6 5 + 1 = 6
120 49 70 119 addcomli 1 + 5 = 6
121 118 120 oveq12i 1 6 + 1 + 5 = 6 + 6
122 6p6e12 6 + 6 = 12
123 121 122 eqtri 1 6 + 1 + 5 = 12
124 9t6e54 9 6 = 54
125 4p3e7 4 + 3 = 7
126 47 7 17 124 125 decaddi 9 6 + 3 = 57
127 1 84 1 17 117 86 54 8 47 123 126 decmac 19 6 + 13 = 127
128 3lt9 3 < 9
129 1 17 115 128 declt 13 < 19
130 116 54 83 127 129 ndvdsi ¬ 19 127
131 2 21 decnncl 23
132 eqid 23 = 23
133 eqid 12 = 12
134 2cn 2
135 5t2e10 5 2 = 10
136 49 134 135 mulcomli 2 5 = 10
137 136 73 oveq12i 2 5 + 1 + 1 = 10 + 2
138 dec10p 10 + 2 = 12
139 137 138 eqtri 2 5 + 1 + 1 = 12
140 5t3e15 5 3 = 15
141 49 33 140 mulcomli 3 5 = 15
142 1 47 2 141 41 decaddi 3 5 + 2 = 17
143 2 17 1 2 132 133 47 8 1 139 142 decmac 23 5 + 12 = 127
144 1lt2 1 < 2
145 1 2 2 17 10 144 decltc 12 < 23
146 131 47 14 143 145 ndvdsi ¬ 23 127
147 5 12 16 20 39 42 62 82 100 114 130 146 prmlem2 127