Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
|- K = ( Base ` R ) |
2 |
|
mat1rhmval.a |
|- A = ( { E } Mat R ) |
3 |
|
mat1rhmval.b |
|- B = ( Base ` A ) |
4 |
|
mat1rhmval.o |
|- O = <. E , E >. |
5 |
|
mat1rhmval.f |
|- F = ( x e. K |-> { <. O , x >. } ) |
6 |
|
df-ov |
|- ( E ( F ` X ) E ) = ( ( F ` X ) ` <. E , E >. ) |
7 |
1 2 3 4 5
|
mat1rhmval |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) = { <. O , X >. } ) |
8 |
7
|
fveq1d |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( ( F ` X ) ` <. E , E >. ) = ( { <. O , X >. } ` <. E , E >. ) ) |
9 |
4
|
eqcomi |
|- <. E , E >. = O |
10 |
9
|
fveq2i |
|- ( { <. O , X >. } ` <. E , E >. ) = ( { <. O , X >. } ` O ) |
11 |
|
opex |
|- <. E , E >. e. _V |
12 |
4 11
|
eqeltri |
|- O e. _V |
13 |
|
simp3 |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> X e. K ) |
14 |
|
fvsng |
|- ( ( O e. _V /\ X e. K ) -> ( { <. O , X >. } ` O ) = X ) |
15 |
12 13 14
|
sylancr |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( { <. O , X >. } ` O ) = X ) |
16 |
10 15
|
eqtrid |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( { <. O , X >. } ` <. E , E >. ) = X ) |
17 |
8 16
|
eqtrd |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( ( F ` X ) ` <. E , E >. ) = X ) |
18 |
6 17
|
eqtrid |
|- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( E ( F ` X ) E ) = X ) |