Metamath Proof Explorer


Theorem mat1rhmelval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K=BaseR
mat1rhmval.a A=EMatR
mat1rhmval.b B=BaseA
mat1rhmval.o O=EE
mat1rhmval.f F=xKOx
Assertion mat1rhmelval RRingEVXKEFXE=X

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K=BaseR
2 mat1rhmval.a A=EMatR
3 mat1rhmval.b B=BaseA
4 mat1rhmval.o O=EE
5 mat1rhmval.f F=xKOx
6 df-ov EFXE=FXEE
7 1 2 3 4 5 mat1rhmval RRingEVXKFX=OX
8 7 fveq1d RRingEVXKFXEE=OXEE
9 4 eqcomi EE=O
10 9 fveq2i OXEE=OXO
11 opex EEV
12 4 11 eqeltri OV
13 simp3 RRingEVXKXK
14 fvsng OVXKOXO=X
15 12 13 14 sylancr RRingEVXKOXO=X
16 10 15 eqtrid RRingEVXKOXEE=X
17 8 16 eqtrd RRingEVXKFXEE=X
18 6 17 eqtrid RRingEVXKEFXE=X