| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> D e. ( PsMet ` X ) ) |
| 2 |
|
simp3 |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> P e. X ) |
| 3 |
|
simpr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) /\ w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) ) /\ w C_ V ) -> w C_ V ) |
| 4 |
|
eqid |
|- ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) = ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) |
| 5 |
4
|
elrnmpt |
|- ( w e. _V -> ( w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) <-> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) ) |
| 6 |
5
|
elv |
|- ( w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) <-> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) |
| 7 |
6
|
biimpi |
|- ( w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) -> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) |
| 8 |
7
|
ad2antlr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) /\ w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) ) /\ w C_ V ) -> E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) ) |
| 9 |
|
sseq1 |
|- ( w = ( `' D " ( 0 [,) r ) ) -> ( w C_ V <-> ( `' D " ( 0 [,) r ) ) C_ V ) ) |
| 10 |
9
|
biimpcd |
|- ( w C_ V -> ( w = ( `' D " ( 0 [,) r ) ) -> ( `' D " ( 0 [,) r ) ) C_ V ) ) |
| 11 |
10
|
reximdv |
|- ( w C_ V -> ( E. r e. RR+ w = ( `' D " ( 0 [,) r ) ) -> E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) ) |
| 12 |
3 8 11
|
sylc |
|- ( ( ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) /\ w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) ) /\ w C_ V ) -> E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) |
| 13 |
2
|
ne0d |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> X =/= (/) ) |
| 14 |
|
simp2 |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> V e. ( metUnif ` D ) ) |
| 15 |
|
metuel |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) w C_ V ) ) ) |
| 16 |
15
|
simplbda |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ V e. ( metUnif ` D ) ) -> E. w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) w C_ V ) |
| 17 |
13 1 14 16
|
syl21anc |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. w e. ran ( r e. RR+ |-> ( `' D " ( 0 [,) r ) ) ) w C_ V ) |
| 18 |
12 17
|
r19.29a |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) |
| 19 |
|
imass1 |
|- ( ( `' D " ( 0 [,) r ) ) C_ V -> ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) |
| 20 |
19
|
reximi |
|- ( E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V -> E. r e. RR+ ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) |
| 21 |
|
blval2 |
|- ( ( D e. ( PsMet ` X ) /\ P e. X /\ r e. RR+ ) -> ( P ( ball ` D ) r ) = ( ( `' D " ( 0 [,) r ) ) " { P } ) ) |
| 22 |
21
|
sseq1d |
|- ( ( D e. ( PsMet ` X ) /\ P e. X /\ r e. RR+ ) -> ( ( P ( ball ` D ) r ) C_ ( V " { P } ) <-> ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) ) |
| 23 |
22
|
3expa |
|- ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ r e. RR+ ) -> ( ( P ( ball ` D ) r ) C_ ( V " { P } ) <-> ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) ) |
| 24 |
23
|
rexbidva |
|- ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) <-> E. r e. RR+ ( ( `' D " ( 0 [,) r ) ) " { P } ) C_ ( V " { P } ) ) ) |
| 25 |
20 24
|
imbitrrid |
|- ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V -> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) ) |
| 26 |
25
|
imp |
|- ( ( ( D e. ( PsMet ` X ) /\ P e. X ) /\ E. r e. RR+ ( `' D " ( 0 [,) r ) ) C_ V ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) |
| 27 |
1 2 18 26
|
syl21anc |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) |
| 28 |
|
blssexps |
|- ( ( D e. ( PsMet ` X ) /\ P e. X ) -> ( E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) ) |
| 29 |
28
|
3adant2 |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> ( E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ ( V " { P } ) ) ) |
| 30 |
27 29
|
mpbird |
|- ( ( D e. ( PsMet ` X ) /\ V e. ( metUnif ` D ) /\ P e. X ) -> E. a e. ran ( ball ` D ) ( P e. a /\ a C_ ( V " { P } ) ) ) |