Metamath Proof Explorer


Theorem metustbl

Description: The "section" image of an entourage at a point P always contains a ball (centered on this point). (Contributed by Thierry Arnoux, 8-Dec-2017)

Ref Expression
Assertion metustbl D PsMet X V metUnif D P X a ran ball D P a a V P

Proof

Step Hyp Ref Expression
1 simp1 D PsMet X V metUnif D P X D PsMet X
2 simp3 D PsMet X V metUnif D P X P X
3 simpr D PsMet X V metUnif D P X w ran r + D -1 0 r w V w V
4 eqid r + D -1 0 r = r + D -1 0 r
5 4 elrnmpt w V w ran r + D -1 0 r r + w = D -1 0 r
6 5 elv w ran r + D -1 0 r r + w = D -1 0 r
7 6 biimpi w ran r + D -1 0 r r + w = D -1 0 r
8 7 ad2antlr D PsMet X V metUnif D P X w ran r + D -1 0 r w V r + w = D -1 0 r
9 sseq1 w = D -1 0 r w V D -1 0 r V
10 9 biimpcd w V w = D -1 0 r D -1 0 r V
11 10 reximdv w V r + w = D -1 0 r r + D -1 0 r V
12 3 8 11 sylc D PsMet X V metUnif D P X w ran r + D -1 0 r w V r + D -1 0 r V
13 2 ne0d D PsMet X V metUnif D P X X
14 simp2 D PsMet X V metUnif D P X V metUnif D
15 metuel X D PsMet X V metUnif D V X × X w ran r + D -1 0 r w V
16 15 simplbda X D PsMet X V metUnif D w ran r + D -1 0 r w V
17 13 1 14 16 syl21anc D PsMet X V metUnif D P X w ran r + D -1 0 r w V
18 12 17 r19.29a D PsMet X V metUnif D P X r + D -1 0 r V
19 imass1 D -1 0 r V D -1 0 r P V P
20 19 reximi r + D -1 0 r V r + D -1 0 r P V P
21 blval2 D PsMet X P X r + P ball D r = D -1 0 r P
22 21 sseq1d D PsMet X P X r + P ball D r V P D -1 0 r P V P
23 22 3expa D PsMet X P X r + P ball D r V P D -1 0 r P V P
24 23 rexbidva D PsMet X P X r + P ball D r V P r + D -1 0 r P V P
25 20 24 syl5ibr D PsMet X P X r + D -1 0 r V r + P ball D r V P
26 25 imp D PsMet X P X r + D -1 0 r V r + P ball D r V P
27 1 2 18 26 syl21anc D PsMet X V metUnif D P X r + P ball D r V P
28 blssexps D PsMet X P X a ran ball D P a a V P r + P ball D r V P
29 28 3adant2 D PsMet X V metUnif D P X a ran ball D P a a V P r + P ball D r V P
30 27 29 mpbird D PsMet X V metUnif D P X a ran ball D P a a V P