Step |
Hyp |
Ref |
Expression |
1 |
|
metuust |
|
2 |
|
utopval |
|
3 |
1 2
|
syl |
|
4 |
3
|
eleq2d |
|
5 |
|
rabid |
|
6 |
4 5
|
bitrdi |
|
7 |
6
|
biimpa |
|
8 |
7
|
simpld |
|
9 |
8
|
elpwid |
|
10 |
|
unirnblps |
|
11 |
10
|
ad2antlr |
|
12 |
9 11
|
sseqtrrd |
|
13 |
|
simpr |
|
14 |
|
simp-5r |
|
15 |
|
simplr |
|
16 |
9
|
ad3antrrr |
|
17 |
|
simpllr |
|
18 |
16 17
|
sseldd |
|
19 |
|
metustbl |
|
20 |
14 15 18 19
|
syl3anc |
|
21 |
|
sstr |
|
22 |
21
|
expcom |
|
23 |
22
|
anim2d |
|
24 |
23
|
reximdv |
|
25 |
13 20 24
|
sylc |
|
26 |
7
|
simprd |
|
27 |
26
|
r19.21bi |
|
28 |
25 27
|
r19.29a |
|
29 |
28
|
ralrimiva |
|
30 |
12 29
|
jca |
|
31 |
|
fvex |
|
32 |
31
|
rnex |
|
33 |
|
eltg2 |
|
34 |
32 33
|
mp1i |
|
35 |
30 34
|
mpbird |
|
36 |
32 33
|
mp1i |
|
37 |
36
|
biimpa |
|
38 |
37
|
simpld |
|
39 |
10
|
ad2antlr |
|
40 |
38 39
|
sseqtrd |
|
41 |
|
elpwg |
|
42 |
41
|
adantl |
|
43 |
40 42
|
mpbird |
|
44 |
|
simpllr |
|
45 |
40
|
sselda |
|
46 |
37
|
simprd |
|
47 |
46
|
r19.21bi |
|
48 |
|
blssexps |
|
49 |
44 45 48
|
syl2anc |
|
50 |
47 49
|
mpbid |
|
51 |
|
blval2 |
|
52 |
51
|
3expa |
|
53 |
52
|
sseq1d |
|
54 |
53
|
rexbidva |
|
55 |
54
|
biimpa |
|
56 |
44 45 50 55
|
syl21anc |
|
57 |
|
cnvexg |
|
58 |
|
imaexg |
|
59 |
57 58
|
syl |
|
60 |
59
|
ralrimivw |
|
61 |
|
eqid |
|
62 |
|
imaeq1 |
|
63 |
62
|
sseq1d |
|
64 |
61 63
|
rexrnmptw |
|
65 |
44 60 64
|
3syl |
|
66 |
56 65
|
mpbird |
|
67 |
|
oveq2 |
|
68 |
67
|
imaeq2d |
|
69 |
68
|
cbvmptv |
|
70 |
69
|
rneqi |
|
71 |
70
|
metustfbas |
|
72 |
|
ssfg |
|
73 |
71 72
|
syl |
|
74 |
|
metuval |
|
75 |
74
|
adantl |
|
76 |
73 75
|
sseqtrrd |
|
77 |
|
ssrexv |
|
78 |
76 77
|
syl |
|
79 |
78
|
ad2antrr |
|
80 |
66 79
|
mpd |
|
81 |
80
|
ralrimiva |
|
82 |
43 81
|
jca |
|
83 |
6
|
biimpar |
|
84 |
82 83
|
syldan |
|
85 |
35 84
|
impbida |
|
86 |
85
|
eqrdv |
|