Metamath Proof Explorer


Theorem eltg2

Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion eltg2 BVAtopGenBABxAyBxyyA

Proof

Step Hyp Ref Expression
1 tgval2 BVtopGenB=z|zBxzyBxyyz
2 1 eleq2d BVAtopGenBAz|zBxzyBxyyz
3 elex Az|zBxzyBxyyzAV
4 3 adantl BVAz|zBxzyBxyyzAV
5 uniexg BVBV
6 ssexg ABBVAV
7 5 6 sylan2 ABBVAV
8 7 ancoms BVABAV
9 8 adantrr BVABxAyBxyyAAV
10 sseq1 z=AzBAB
11 sseq2 z=AyzyA
12 11 anbi2d z=AxyyzxyyA
13 12 rexbidv z=AyBxyyzyBxyyA
14 13 raleqbi1dv z=AxzyBxyyzxAyBxyyA
15 10 14 anbi12d z=AzBxzyBxyyzABxAyBxyyA
16 15 elabg AVAz|zBxzyBxyyzABxAyBxyyA
17 4 9 16 pm5.21nd BVAz|zBxzyBxyyzABxAyBxyyA
18 2 17 bitrd BVAtopGenBABxAyBxyyA