Metamath Proof Explorer


Theorem mgplemOLD

Description: Obsolete version of setsplusg as of 18-Oct-2024. Lemma for mgpbas . (Contributed by Mario Carneiro, 5-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mgpbas.1
|- M = ( mulGrp ` R )
mgplemOLD.2
|- E = Slot N
mgplemOLD.3
|- N e. NN
mgplemOLD.4
|- N =/= 2
Assertion mgplemOLD
|- ( E ` R ) = ( E ` M )

Proof

Step Hyp Ref Expression
1 mgpbas.1
 |-  M = ( mulGrp ` R )
2 mgplemOLD.2
 |-  E = Slot N
3 mgplemOLD.3
 |-  N e. NN
4 mgplemOLD.4
 |-  N =/= 2
5 2 3 ndxid
 |-  E = Slot ( E ` ndx )
6 2 3 ndxarg
 |-  ( E ` ndx ) = N
7 plusgndx
 |-  ( +g ` ndx ) = 2
8 6 7 neeq12i
 |-  ( ( E ` ndx ) =/= ( +g ` ndx ) <-> N =/= 2 )
9 4 8 mpbir
 |-  ( E ` ndx ) =/= ( +g ` ndx )
10 5 9 setsnid
 |-  ( E ` R ) = ( E ` ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) )
11 eqid
 |-  ( .r ` R ) = ( .r ` R )
12 1 11 mgpval
 |-  M = ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. )
13 12 fveq2i
 |-  ( E ` M ) = ( E ` ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) )
14 10 13 eqtr4i
 |-  ( E ` R ) = ( E ` M )