Step |
Hyp |
Ref |
Expression |
1 |
|
mgpsumunsn.m |
|- M = ( mulGrp ` R ) |
2 |
|
mgpsumunsn.t |
|- .x. = ( .r ` R ) |
3 |
|
mgpsumunsn.r |
|- ( ph -> R e. CRing ) |
4 |
|
mgpsumunsn.n |
|- ( ph -> N e. Fin ) |
5 |
|
mgpsumunsn.i |
|- ( ph -> I e. N ) |
6 |
|
mgpsumunsn.a |
|- ( ( ph /\ k e. N ) -> A e. ( Base ` R ) ) |
7 |
|
mgpsumunsn.x |
|- ( ph -> X e. ( Base ` R ) ) |
8 |
|
mgpsumunsn.e |
|- ( k = I -> A = X ) |
9 |
|
difsnid |
|- ( I e. N -> ( ( N \ { I } ) u. { I } ) = N ) |
10 |
5 9
|
syl |
|- ( ph -> ( ( N \ { I } ) u. { I } ) = N ) |
11 |
10
|
eqcomd |
|- ( ph -> N = ( ( N \ { I } ) u. { I } ) ) |
12 |
11
|
mpteq1d |
|- ( ph -> ( k e. N |-> A ) = ( k e. ( ( N \ { I } ) u. { I } ) |-> A ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( M gsum ( k e. N |-> A ) ) = ( M gsum ( k e. ( ( N \ { I } ) u. { I } ) |-> A ) ) ) |
14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
15 |
1 14
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
16 |
1 2
|
mgpplusg |
|- .x. = ( +g ` M ) |
17 |
1
|
crngmgp |
|- ( R e. CRing -> M e. CMnd ) |
18 |
3 17
|
syl |
|- ( ph -> M e. CMnd ) |
19 |
|
diffi |
|- ( N e. Fin -> ( N \ { I } ) e. Fin ) |
20 |
4 19
|
syl |
|- ( ph -> ( N \ { I } ) e. Fin ) |
21 |
|
eldifi |
|- ( k e. ( N \ { I } ) -> k e. N ) |
22 |
21 6
|
sylan2 |
|- ( ( ph /\ k e. ( N \ { I } ) ) -> A e. ( Base ` R ) ) |
23 |
|
neldifsnd |
|- ( ph -> -. I e. ( N \ { I } ) ) |
24 |
15 16 18 20 22 5 23 7 8
|
gsumunsn |
|- ( ph -> ( M gsum ( k e. ( ( N \ { I } ) u. { I } ) |-> A ) ) = ( ( M gsum ( k e. ( N \ { I } ) |-> A ) ) .x. X ) ) |
25 |
13 24
|
eqtrd |
|- ( ph -> ( M gsum ( k e. N |-> A ) ) = ( ( M gsum ( k e. ( N \ { I } ) |-> A ) ) .x. X ) ) |