Metamath Proof Explorer


Theorem mgpsumunsn

Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m M = mulGrp R
mgpsumunsn.t · ˙ = R
mgpsumunsn.r φ R CRing
mgpsumunsn.n φ N Fin
mgpsumunsn.i φ I N
mgpsumunsn.a φ k N A Base R
mgpsumunsn.x φ X Base R
mgpsumunsn.e k = I A = X
Assertion mgpsumunsn φ M k N A = M k N I A · ˙ X

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m M = mulGrp R
2 mgpsumunsn.t · ˙ = R
3 mgpsumunsn.r φ R CRing
4 mgpsumunsn.n φ N Fin
5 mgpsumunsn.i φ I N
6 mgpsumunsn.a φ k N A Base R
7 mgpsumunsn.x φ X Base R
8 mgpsumunsn.e k = I A = X
9 difsnid I N N I I = N
10 5 9 syl φ N I I = N
11 10 eqcomd φ N = N I I
12 11 mpteq1d φ k N A = k N I I A
13 12 oveq2d φ M k N A = M k N I I A
14 eqid Base R = Base R
15 1 14 mgpbas Base R = Base M
16 1 2 mgpplusg · ˙ = + M
17 1 crngmgp R CRing M CMnd
18 3 17 syl φ M CMnd
19 diffi N Fin N I Fin
20 4 19 syl φ N I Fin
21 eldifi k N I k N
22 21 6 sylan2 φ k N I A Base R
23 neldifsnd φ ¬ I N I
24 15 16 18 20 22 5 23 7 8 gsumunsn φ M k N I I A = M k N I A · ˙ X
25 13 24 eqtrd φ M k N A = M k N I A · ˙ X