Metamath Proof Explorer


Theorem mgpsumunsn

Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m M=mulGrpR
mgpsumunsn.t ·˙=R
mgpsumunsn.r φRCRing
mgpsumunsn.n φNFin
mgpsumunsn.i φIN
mgpsumunsn.a φkNABaseR
mgpsumunsn.x φXBaseR
mgpsumunsn.e k=IA=X
Assertion mgpsumunsn φMkNA=MkNIA·˙X

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m M=mulGrpR
2 mgpsumunsn.t ·˙=R
3 mgpsumunsn.r φRCRing
4 mgpsumunsn.n φNFin
5 mgpsumunsn.i φIN
6 mgpsumunsn.a φkNABaseR
7 mgpsumunsn.x φXBaseR
8 mgpsumunsn.e k=IA=X
9 difsnid INNII=N
10 5 9 syl φNII=N
11 10 eqcomd φN=NII
12 11 mpteq1d φkNA=kNIIA
13 12 oveq2d φMkNA=MkNIIA
14 eqid BaseR=BaseR
15 1 14 mgpbas BaseR=BaseM
16 1 2 mgpplusg ·˙=+M
17 1 crngmgp RCRingMCMnd
18 3 17 syl φMCMnd
19 diffi NFinNIFin
20 4 19 syl φNIFin
21 eldifi kNIkN
22 21 6 sylan2 φkNIABaseR
23 neldifsnd φ¬INI
24 15 16 18 20 22 5 23 7 8 gsumunsn φMkNIIA=MkNIA·˙X
25 13 24 eqtrd φMkNA=MkNIA·˙X