Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgpsumunsn.m | |
|
mgpsumunsn.t | |
||
mgpsumunsn.r | |
||
mgpsumunsn.n | |
||
mgpsumunsn.i | |
||
mgpsumunsn.a | |
||
mgpsumunsn.x | |
||
mgpsumunsn.e | |
||
Assertion | mgpsumunsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.m | |
|
2 | mgpsumunsn.t | |
|
3 | mgpsumunsn.r | |
|
4 | mgpsumunsn.n | |
|
5 | mgpsumunsn.i | |
|
6 | mgpsumunsn.a | |
|
7 | mgpsumunsn.x | |
|
8 | mgpsumunsn.e | |
|
9 | difsnid | |
|
10 | 5 9 | syl | |
11 | 10 | eqcomd | |
12 | 11 | mpteq1d | |
13 | 12 | oveq2d | |
14 | eqid | |
|
15 | 1 14 | mgpbas | |
16 | 1 2 | mgpplusg | |
17 | 1 | crngmgp | |
18 | 3 17 | syl | |
19 | diffi | |
|
20 | 4 19 | syl | |
21 | eldifi | |
|
22 | 21 6 | sylan2 | |
23 | neldifsnd | |
|
24 | 15 16 18 20 22 5 23 7 8 | gsumunsn | |
25 | 13 24 | eqtrd | |