Step |
Hyp |
Ref |
Expression |
1 |
|
mgpsumunsn.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
mgpsumunsn.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
mgpsumunsn.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
4 |
|
mgpsumunsn.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
5 |
|
mgpsumunsn.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
6 |
|
mgpsumunsn.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
7 |
|
mgpsumunsn.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
8 |
|
mgpsumunsn.e |
⊢ ( 𝑘 = 𝐼 → 𝐴 = 𝑋 ) |
9 |
|
difsnid |
⊢ ( 𝐼 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) = 𝑁 ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) = 𝑁 ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ) |
12 |
11
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑁 ↦ 𝐴 ) = ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ 𝑁 ↦ 𝐴 ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
1 14
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
16 |
1 2
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
17 |
1
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
19 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin ) |
21 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑘 ∈ 𝑁 ) |
22 |
21 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
23 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐼 ∈ ( 𝑁 ∖ { 𝐼 } ) ) |
24 |
15 16 18 20 22 5 23 7 8
|
gsumunsn |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) ) |
25 |
13 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ 𝑁 ↦ 𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) ) |