| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgpsumunsn.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
mgpsumunsn.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
mgpsumunsn.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 4 |
|
mgpsumunsn.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 5 |
|
mgpsumunsn.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
| 6 |
|
mgpsumunsn.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
|
mgpsumunsn.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 8 |
|
mgpsumunsn.e |
⊢ ( 𝑘 = 𝐼 → 𝐴 = 𝑋 ) |
| 9 |
|
difsnid |
⊢ ( 𝐼 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) = 𝑁 ) |
| 10 |
5 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) = 𝑁 ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ) |
| 12 |
11
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑁 ↦ 𝐴 ) = ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ 𝑁 ↦ 𝐴 ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 15 |
1 14
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 16 |
1 2
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
| 17 |
1
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 19 |
|
diffi |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin ) |
| 21 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑘 ∈ 𝑁 ) |
| 22 |
21 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝐼 ∈ ( 𝑁 ∖ { 𝐼 } ) ) |
| 24 |
15 16 18 20 22 5 23 7 8
|
gsumunsn |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) ) |
| 25 |
13 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ 𝑁 ↦ 𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) ) |