Metamath Proof Explorer


Theorem mgpsumunsn

Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses mgpsumunsn.m 𝑀 = ( mulGrp ‘ 𝑅 )
mgpsumunsn.t · = ( .r𝑅 )
mgpsumunsn.r ( 𝜑𝑅 ∈ CRing )
mgpsumunsn.n ( 𝜑𝑁 ∈ Fin )
mgpsumunsn.i ( 𝜑𝐼𝑁 )
mgpsumunsn.a ( ( 𝜑𝑘𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
mgpsumunsn.x ( 𝜑𝑋 ∈ ( Base ‘ 𝑅 ) )
mgpsumunsn.e ( 𝑘 = 𝐼𝐴 = 𝑋 )
Assertion mgpsumunsn ( 𝜑 → ( 𝑀 Σg ( 𝑘𝑁𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 mgpsumunsn.m 𝑀 = ( mulGrp ‘ 𝑅 )
2 mgpsumunsn.t · = ( .r𝑅 )
3 mgpsumunsn.r ( 𝜑𝑅 ∈ CRing )
4 mgpsumunsn.n ( 𝜑𝑁 ∈ Fin )
5 mgpsumunsn.i ( 𝜑𝐼𝑁 )
6 mgpsumunsn.a ( ( 𝜑𝑘𝑁 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
7 mgpsumunsn.x ( 𝜑𝑋 ∈ ( Base ‘ 𝑅 ) )
8 mgpsumunsn.e ( 𝑘 = 𝐼𝐴 = 𝑋 )
9 difsnid ( 𝐼𝑁 → ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) = 𝑁 )
10 5 9 syl ( 𝜑 → ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) = 𝑁 )
11 10 eqcomd ( 𝜑𝑁 = ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) )
12 11 mpteq1d ( 𝜑 → ( 𝑘𝑁𝐴 ) = ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) )
13 12 oveq2d ( 𝜑 → ( 𝑀 Σg ( 𝑘𝑁𝐴 ) ) = ( 𝑀 Σg ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) )
14 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
15 1 14 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 )
16 1 2 mgpplusg · = ( +g𝑀 )
17 1 crngmgp ( 𝑅 ∈ CRing → 𝑀 ∈ CMnd )
18 3 17 syl ( 𝜑𝑀 ∈ CMnd )
19 diffi ( 𝑁 ∈ Fin → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin )
20 4 19 syl ( 𝜑 → ( 𝑁 ∖ { 𝐼 } ) ∈ Fin )
21 eldifi ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑘𝑁 )
22 21 6 sylan2 ( ( 𝜑𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) )
23 neldifsnd ( 𝜑 → ¬ 𝐼 ∈ ( 𝑁 ∖ { 𝐼 } ) )
24 15 16 18 20 22 5 23 7 8 gsumunsn ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( ( 𝑁 ∖ { 𝐼 } ) ∪ { 𝐼 } ) ↦ 𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) )
25 13 24 eqtrd ( 𝜑 → ( 𝑀 Σg ( 𝑘𝑁𝐴 ) ) = ( ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝐼 } ) ↦ 𝐴 ) ) · 𝑋 ) )