| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 2 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 3 |
|
remulcl |
|- ( ( N e. RR /\ ( |_ ` A ) e. RR ) -> ( N x. ( |_ ` A ) ) e. RR ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( N e. NN /\ A e. RR ) -> ( N x. ( |_ ` A ) ) e. RR ) |
| 5 |
4
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. ( |_ ` A ) ) e. RR ) |
| 6 |
|
remulcl |
|- ( ( N e. RR /\ A e. RR ) -> ( N x. A ) e. RR ) |
| 7 |
1 6
|
sylan |
|- ( ( N e. NN /\ A e. RR ) -> ( N x. A ) e. RR ) |
| 8 |
|
reflcl |
|- ( ( N x. A ) e. RR -> ( |_ ` ( N x. A ) ) e. RR ) |
| 9 |
7 8
|
syl |
|- ( ( N e. NN /\ A e. RR ) -> ( |_ ` ( N x. A ) ) e. RR ) |
| 10 |
9
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( N x. A ) ) e. RR ) |
| 11 |
|
nnmulcl |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. NN ) |
| 12 |
11
|
nnred |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. RR ) |
| 13 |
12
|
3adant2 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. M ) e. RR ) |
| 14 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 15 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 16 |
14 15
|
jca |
|- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
| 17 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 18 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
| 19 |
17 18
|
jca |
|- ( M e. NN -> ( M e. CC /\ M =/= 0 ) ) |
| 20 |
|
mulne0 |
|- ( ( ( N e. CC /\ N =/= 0 ) /\ ( M e. CC /\ M =/= 0 ) ) -> ( N x. M ) =/= 0 ) |
| 21 |
16 19 20
|
syl2an |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) =/= 0 ) |
| 22 |
21
|
3adant2 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. M ) =/= 0 ) |
| 23 |
5 13 22
|
redivcld |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) e. RR ) |
| 24 |
|
reflcl |
|- ( ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) e. RR -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) e. RR ) |
| 25 |
23 24
|
syl |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) e. RR ) |
| 26 |
13 25
|
remulcld |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) e. RR ) |
| 27 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 28 |
|
flmulnn0 |
|- ( ( N e. NN0 /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |
| 29 |
27 28
|
sylan |
|- ( ( N e. NN /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |
| 30 |
29
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |
| 31 |
5 10 26 30
|
lesub1dd |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) <_ ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
| 32 |
11
|
nnrpd |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. RR+ ) |
| 33 |
|
modval |
|- ( ( ( N x. ( |_ ` A ) ) e. RR /\ ( N x. M ) e. RR+ ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) = ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
| 34 |
5 32 33
|
3imp3i2an |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) = ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
| 35 |
|
modval |
|- ( ( ( |_ ` ( N x. A ) ) e. RR /\ ( N x. M ) e. RR+ ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) ) |
| 36 |
10 32 35
|
3imp3i2an |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) ) |
| 37 |
7
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. A ) e. RR ) |
| 38 |
|
fldiv |
|- ( ( ( N x. A ) e. RR /\ ( N x. M ) e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) ) |
| 39 |
37 11 38
|
3imp3i2an |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) ) |
| 40 |
|
fldiv |
|- ( ( A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` A ) / M ) ) = ( |_ ` ( A / M ) ) ) |
| 41 |
40
|
3adant3 |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / M ) ) = ( |_ ` ( A / M ) ) ) |
| 42 |
2
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
| 43 |
|
divcan5 |
|- ( ( ( |_ ` A ) e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) = ( ( |_ ` A ) / M ) ) |
| 44 |
42 19 16 43
|
syl3an |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) = ( ( |_ ` A ) / M ) ) |
| 45 |
44
|
fveq2d |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( |_ ` A ) / M ) ) ) |
| 46 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 47 |
|
divcan5 |
|- ( ( A e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( N x. A ) / ( N x. M ) ) = ( A / M ) ) |
| 48 |
46 19 16 47
|
syl3an |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( N x. A ) / ( N x. M ) ) = ( A / M ) ) |
| 49 |
48
|
fveq2d |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( A / M ) ) ) |
| 50 |
41 45 49
|
3eqtr4rd |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) |
| 51 |
50
|
3comr |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) |
| 52 |
39 51
|
eqtrd |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) = ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) |
| 54 |
53
|
oveq2d |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
| 55 |
36 54
|
eqtrd |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
| 56 |
31 34 55
|
3brtr4d |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) <_ ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) ) |