| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modval |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 2 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 3 |
2
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 4 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 5 |
|
reflcl |
|- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) |
| 6 |
5
|
recnd |
|- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) |
| 7 |
4 6
|
syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 8 |
3 7
|
mulcomd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) |
| 9 |
8
|
oveq2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
| 10 |
1 9
|
eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |