Metamath Proof Explorer


Theorem modvalr

Description: The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion modvalr AB+AmodB=AABB

Proof

Step Hyp Ref Expression
1 modval AB+AmodB=ABAB
2 rpcn B+B
3 2 adantl AB+B
4 rerpdivcl AB+AB
5 reflcl ABAB
6 5 recnd ABAB
7 4 6 syl AB+AB
8 3 7 mulcomd AB+BAB=ABB
9 8 oveq2d AB+ABAB=AABB
10 1 9 eqtrd AB+AmodB=AABB