Step |
Hyp |
Ref |
Expression |
1 |
|
mpfsubrg.q |
|- Q = ran ( ( I evalSub S ) ` R ) |
2 |
|
mpff.b |
|- B = ( Base ` S ) |
3 |
2
|
eqcomi |
|- ( Base ` S ) = B |
4 |
3
|
oveq1i |
|- ( ( Base ` S ) ^m I ) = ( B ^m I ) |
5 |
4
|
oveq2i |
|- ( S ^s ( ( Base ` S ) ^m I ) ) = ( S ^s ( B ^m I ) ) |
6 |
|
eqid |
|- ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
7 |
1
|
mpfrcl |
|- ( F e. Q -> ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) ) |
8 |
7
|
simp2d |
|- ( F e. Q -> S e. CRing ) |
9 |
|
ovexd |
|- ( F e. Q -> ( B ^m I ) e. _V ) |
10 |
1
|
mpfsubrg |
|- ( ( I e. _V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
11 |
6
|
subrgss |
|- ( Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) -> Q C_ ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
12 |
7 10 11
|
3syl |
|- ( F e. Q -> Q C_ ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
13 |
|
id |
|- ( F e. Q -> F e. Q ) |
14 |
12 13
|
sseldd |
|- ( F e. Q -> F e. ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
15 |
5 2 6 8 9 14
|
pwselbas |
|- ( F e. Q -> F : ( B ^m I ) --> B ) |