Metamath Proof Explorer


Theorem mpff

Description: Polynomial functions are functions. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses mpfsubrg.q Q=ranIevalSubSR
mpff.b B=BaseS
Assertion mpff FQF:BIB

Proof

Step Hyp Ref Expression
1 mpfsubrg.q Q=ranIevalSubSR
2 mpff.b B=BaseS
3 2 eqcomi BaseS=B
4 3 oveq1i BaseSI=BI
5 4 oveq2i S𝑠BaseSI=S𝑠BI
6 eqid BaseS𝑠BaseSI=BaseS𝑠BaseSI
7 1 mpfrcl FQIVSCRingRSubRingS
8 7 simp2d FQSCRing
9 ovexd FQBIV
10 1 mpfsubrg IVSCRingRSubRingSQSubRingS𝑠BaseSI
11 6 subrgss QSubRingS𝑠BaseSIQBaseS𝑠BaseSI
12 7 10 11 3syl FQQBaseS𝑠BaseSI
13 id FQFQ
14 12 13 sseldd FQFBaseS𝑠BaseSI
15 5 2 6 8 9 14 pwselbas FQF:BIB