| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpfrcl.q |
|
| 2 |
|
ne0i |
|
| 3 |
2 1
|
eleq2s |
|
| 4 |
|
rneq |
|
| 5 |
|
rn0 |
|
| 6 |
4 5
|
eqtrdi |
|
| 7 |
6
|
necon3i |
|
| 8 |
|
fveq1 |
|
| 9 |
|
0fv |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
necon3i |
|
| 12 |
|
reldmevls |
|
| 13 |
12
|
ovprc1 |
|
| 14 |
13
|
necon1ai |
|
| 15 |
|
n0 |
|
| 16 |
|
df-evls |
|
| 17 |
16
|
elmpocl2 |
|
| 18 |
17
|
a1d |
|
| 19 |
18
|
exlimiv |
|
| 20 |
15 19
|
sylbi |
|
| 21 |
14 20
|
jcai |
|
| 22 |
11 21
|
syl |
|
| 23 |
|
fvex |
|
| 24 |
|
nfcv |
|
| 25 |
|
nfcsb1v |
|
| 26 |
24 25
|
nfmpt |
|
| 27 |
|
csbeq1a |
|
| 28 |
27
|
mpteq2dv |
|
| 29 |
23 26 28
|
csbief |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
adantl |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
csbeq1d |
|
| 35 |
|
id |
|
| 36 |
|
oveq1 |
|
| 37 |
35 36
|
oveqan12d |
|
| 38 |
37
|
csbeq1d |
|
| 39 |
|
id |
|
| 40 |
|
oveq2 |
|
| 41 |
39 40
|
oveqan12rd |
|
| 42 |
41
|
oveq2d |
|
| 43 |
40
|
adantr |
|
| 44 |
43
|
xpeq1d |
|
| 45 |
44
|
mpteq2dv |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
35 36
|
oveqan12d |
|
| 48 |
47
|
coeq2d |
|
| 49 |
|
simpl |
|
| 50 |
43
|
mpteq1d |
|
| 51 |
49 50
|
mpteq12dv |
|
| 52 |
48 51
|
eqeq12d |
|
| 53 |
46 52
|
anbi12d |
|
| 54 |
42 53
|
riotaeqbidv |
|
| 55 |
54
|
csbeq2dv |
|
| 56 |
38 55
|
eqtrd |
|
| 57 |
56
|
csbeq2dv |
|
| 58 |
34 57
|
eqtrd |
|
| 59 |
31 58
|
mpteq12dv |
|
| 60 |
29 59
|
eqtrid |
|
| 61 |
|
fvex |
|
| 62 |
61
|
mptex |
|
| 63 |
60 16 62
|
ovmpoa |
|
| 64 |
63
|
dmeqd |
|
| 65 |
|
eqid |
|
| 66 |
65
|
dmmptss |
|
| 67 |
64 66
|
eqsstrdi |
|
| 68 |
67
|
ssneld |
|
| 69 |
|
ndmfv |
|
| 70 |
68 69
|
syl6 |
|
| 71 |
70
|
necon1ad |
|
| 72 |
71
|
com12 |
|
| 73 |
22 72
|
jcai |
|
| 74 |
|
df-3an |
|
| 75 |
73 74
|
sylibr |
|
| 76 |
3 7 75
|
3syl |
|