Metamath Proof Explorer


Theorem mpfsubrg

Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 6-May-2015) (Revised by AV, 19-Sep-2021)

Ref Expression
Hypothesis mpfsubrg.q Q=ranIevalSubSR
Assertion mpfsubrg IVSCRingRSubRingSQSubRingS𝑠BaseSI

Proof

Step Hyp Ref Expression
1 mpfsubrg.q Q=ranIevalSubSR
2 eqid IevalSubSR=IevalSubSR
3 eqid ImPolyS𝑠R=ImPolyS𝑠R
4 eqid S𝑠R=S𝑠R
5 eqid S𝑠BaseSI=S𝑠BaseSI
6 eqid BaseS=BaseS
7 2 3 4 5 6 evlsrhm IVSCRingRSubRingSIevalSubSRImPolyS𝑠RRingHomS𝑠BaseSI
8 eqid BaseImPolyS𝑠R=BaseImPolyS𝑠R
9 eqid BaseS𝑠BaseSI=BaseS𝑠BaseSI
10 8 9 rhmf IevalSubSRImPolyS𝑠RRingHomS𝑠BaseSIIevalSubSR:BaseImPolyS𝑠RBaseS𝑠BaseSI
11 ffn IevalSubSR:BaseImPolyS𝑠RBaseS𝑠BaseSIIevalSubSRFnBaseImPolyS𝑠R
12 fnima IevalSubSRFnBaseImPolyS𝑠RIevalSubSRBaseImPolyS𝑠R=ranIevalSubSR
13 11 12 syl IevalSubSR:BaseImPolyS𝑠RBaseS𝑠BaseSIIevalSubSRBaseImPolyS𝑠R=ranIevalSubSR
14 7 10 13 3syl IVSCRingRSubRingSIevalSubSRBaseImPolyS𝑠R=ranIevalSubSR
15 1 14 eqtr4id IVSCRingRSubRingSQ=IevalSubSRBaseImPolyS𝑠R
16 4 subrgring RSubRingSS𝑠RRing
17 3 mplring IVS𝑠RRingImPolyS𝑠RRing
18 16 17 sylan2 IVRSubRingSImPolyS𝑠RRing
19 18 3adant2 IVSCRingRSubRingSImPolyS𝑠RRing
20 8 subrgid ImPolyS𝑠RRingBaseImPolyS𝑠RSubRingImPolyS𝑠R
21 19 20 syl IVSCRingRSubRingSBaseImPolyS𝑠RSubRingImPolyS𝑠R
22 rhmima IevalSubSRImPolyS𝑠RRingHomS𝑠BaseSIBaseImPolyS𝑠RSubRingImPolyS𝑠RIevalSubSRBaseImPolyS𝑠RSubRingS𝑠BaseSI
23 7 21 22 syl2anc IVSCRingRSubRingSIevalSubSRBaseImPolyS𝑠RSubRingS𝑠BaseSI
24 15 23 eqeltrd IVSCRingRSubRingSQSubRingS𝑠BaseSI