Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
|- P = ( I mPoly R ) |
2 |
|
mplcoe1.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
3 |
|
mplcoe1.z |
|- .0. = ( 0g ` R ) |
4 |
|
mplcoe1.o |
|- .1. = ( 1r ` R ) |
5 |
|
mplcoe1.i |
|- ( ph -> I e. W ) |
6 |
|
mplcoe2.g |
|- G = ( mulGrp ` P ) |
7 |
|
mplcoe2.m |
|- .^ = ( .g ` G ) |
8 |
|
mplcoe2.v |
|- V = ( I mVar R ) |
9 |
|
mplcoe2.r |
|- ( ph -> R e. CRing ) |
10 |
|
mplcoe2.y |
|- ( ph -> Y e. D ) |
11 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
12 |
9 11
|
syl |
|- ( ph -> R e. Ring ) |
13 |
1
|
mplcrng |
|- ( ( I e. W /\ R e. CRing ) -> P e. CRing ) |
14 |
5 9 13
|
syl2anc |
|- ( ph -> P e. CRing ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> P e. CRing ) |
16 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
17 |
5
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> I e. W ) |
18 |
12
|
adantr |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> R e. Ring ) |
19 |
|
simprr |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> y e. I ) |
20 |
1 8 16 17 18 19
|
mvrcl |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( V ` y ) e. ( Base ` P ) ) |
21 |
|
simprl |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> x e. I ) |
22 |
1 8 16 17 18 21
|
mvrcl |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( V ` x ) e. ( Base ` P ) ) |
23 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
24 |
6 23
|
mgpplusg |
|- ( .r ` P ) = ( +g ` G ) |
25 |
24
|
eqcomi |
|- ( +g ` G ) = ( .r ` P ) |
26 |
16 25
|
crngcom |
|- ( ( P e. CRing /\ ( V ` y ) e. ( Base ` P ) /\ ( V ` x ) e. ( Base ` P ) ) -> ( ( V ` y ) ( +g ` G ) ( V ` x ) ) = ( ( V ` x ) ( +g ` G ) ( V ` y ) ) ) |
27 |
15 20 22 26
|
syl3anc |
|- ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( ( V ` y ) ( +g ` G ) ( V ` x ) ) = ( ( V ` x ) ( +g ` G ) ( V ` y ) ) ) |
28 |
27
|
ralrimivva |
|- ( ph -> A. x e. I A. y e. I ( ( V ` y ) ( +g ` G ) ( V ` x ) ) = ( ( V ` x ) ( +g ` G ) ( V ` y ) ) ) |
29 |
1 2 3 4 5 6 7 8 12 10 28
|
mplcoe5 |
|- ( ph -> ( y e. D |-> if ( y = Y , .1. , .0. ) ) = ( G gsum ( k e. I |-> ( ( Y ` k ) .^ ( V ` k ) ) ) ) ) |