Step |
Hyp |
Ref |
Expression |
1 |
|
mptelpm.b |
|- ( ( ph /\ x e. A ) -> B e. C ) |
2 |
|
mptelpm.a |
|- ( ph -> A C_ D ) |
3 |
|
mptelpm.c |
|- ( ph -> C e. V ) |
4 |
|
mptelpm.d |
|- ( ph -> D e. W ) |
5 |
1
|
fmpttd |
|- ( ph -> ( x e. A |-> B ) : A --> C ) |
6 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
7 |
6 1
|
dmmptd |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
8 |
7
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
9 |
8
|
feq2d |
|- ( ph -> ( ( x e. A |-> B ) : A --> C <-> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C ) ) |
10 |
5 9
|
mpbid |
|- ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C ) |
11 |
7 2
|
eqsstrd |
|- ( ph -> dom ( x e. A |-> B ) C_ D ) |
12 |
10 11
|
jca |
|- ( ph -> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) |
13 |
|
elpm2g |
|- ( ( C e. V /\ D e. W ) -> ( ( x e. A |-> B ) e. ( C ^pm D ) <-> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) ) |
14 |
3 4 13
|
syl2anc |
|- ( ph -> ( ( x e. A |-> B ) e. ( C ^pm D ) <-> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> C /\ dom ( x e. A |-> B ) C_ D ) ) ) |
15 |
12 14
|
mpbird |
|- ( ph -> ( x e. A |-> B ) e. ( C ^pm D ) ) |