| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptelpm.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
| 2 |
|
mptelpm.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐷 ) |
| 3 |
|
mptelpm.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
mptelpm.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 5 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 7 |
6 1
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 9 |
8
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ) ) |
| 10 |
5 9
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ) |
| 11 |
7 2
|
eqsstrd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) |
| 12 |
10 11
|
jca |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) ) |
| 13 |
|
elpm2g |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) ) ) |
| 14 |
3 4 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ 𝐶 ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐷 ) ) ) |
| 15 |
12 14
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( 𝐶 ↑pm 𝐷 ) ) |