| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nbgrssovtx.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
nbgrssovtx |
|- ( G NeighbVtx X ) C_ ( V \ { X } ) |
| 3 |
|
df-nel |
|- ( M e/ ( G NeighbVtx X ) <-> -. M e. ( G NeighbVtx X ) ) |
| 4 |
|
disjsn |
|- ( ( ( G NeighbVtx X ) i^i { M } ) = (/) <-> -. M e. ( G NeighbVtx X ) ) |
| 5 |
3 4
|
sylbb2 |
|- ( M e/ ( G NeighbVtx X ) -> ( ( G NeighbVtx X ) i^i { M } ) = (/) ) |
| 6 |
|
reldisj |
|- ( ( G NeighbVtx X ) C_ ( V \ { X } ) -> ( ( ( G NeighbVtx X ) i^i { M } ) = (/) <-> ( G NeighbVtx X ) C_ ( ( V \ { X } ) \ { M } ) ) ) |
| 7 |
5 6
|
imbitrid |
|- ( ( G NeighbVtx X ) C_ ( V \ { X } ) -> ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( ( V \ { X } ) \ { M } ) ) ) |
| 8 |
2 7
|
ax-mp |
|- ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( ( V \ { X } ) \ { M } ) ) |
| 9 |
|
prcom |
|- { M , X } = { X , M } |
| 10 |
9
|
difeq2i |
|- ( V \ { M , X } ) = ( V \ { X , M } ) |
| 11 |
|
difpr |
|- ( V \ { X , M } ) = ( ( V \ { X } ) \ { M } ) |
| 12 |
10 11
|
eqtri |
|- ( V \ { M , X } ) = ( ( V \ { X } ) \ { M } ) |
| 13 |
8 12
|
sseqtrrdi |
|- ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( V \ { M , X } ) ) |