Metamath Proof Explorer


Theorem nbgrssvwo2

Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself and a class M which is not a neighbor of X . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)

Ref Expression
Hypothesis nbgrssovtx.v V=VtxG
Assertion nbgrssvwo2 MGNeighbVtxXGNeighbVtxXVMX

Proof

Step Hyp Ref Expression
1 nbgrssovtx.v V=VtxG
2 1 nbgrssovtx GNeighbVtxXVX
3 df-nel MGNeighbVtxX¬MGNeighbVtxX
4 disjsn GNeighbVtxXM=¬MGNeighbVtxX
5 3 4 sylbb2 MGNeighbVtxXGNeighbVtxXM=
6 reldisj GNeighbVtxXVXGNeighbVtxXM=GNeighbVtxXVXM
7 5 6 imbitrid GNeighbVtxXVXMGNeighbVtxXGNeighbVtxXVXM
8 2 7 ax-mp MGNeighbVtxXGNeighbVtxXVXM
9 prcom MX=XM
10 9 difeq2i VMX=VXM
11 difpr VXM=VXM
12 10 11 eqtri VMX=VXM
13 8 12 sseqtrrdi MGNeighbVtxXGNeighbVtxXVMX