Step |
Hyp |
Ref |
Expression |
1 |
|
nbgrssovtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
nbgrssovtx |
⊢ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) |
3 |
|
df-nel |
⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
4 |
|
disjsn |
⊢ ( ( ( 𝐺 NeighbVtx 𝑋 ) ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
5 |
3 4
|
sylbb2 |
⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( ( 𝐺 NeighbVtx 𝑋 ) ∩ { 𝑀 } ) = ∅ ) |
6 |
|
reldisj |
⊢ ( ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) → ( ( ( 𝐺 NeighbVtx 𝑋 ) ∩ { 𝑀 } ) = ∅ ↔ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) ) ) |
7 |
5 6
|
syl5ib |
⊢ ( ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) → ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) ) ) |
8 |
2 7
|
ax-mp |
⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) ) |
9 |
|
prcom |
⊢ { 𝑀 , 𝑋 } = { 𝑋 , 𝑀 } |
10 |
9
|
difeq2i |
⊢ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) = ( 𝑉 ∖ { 𝑋 , 𝑀 } ) |
11 |
|
difpr |
⊢ ( 𝑉 ∖ { 𝑋 , 𝑀 } ) = ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) |
12 |
10 11
|
eqtri |
⊢ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) = ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) |
13 |
8 12
|
sseqtrrdi |
⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) ) |