Metamath Proof Explorer


Theorem nbgrssovtx

Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself. Stronger version of nbgrssvtx . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)

Ref Expression
Hypothesis nbgrssovtx.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion nbgrssovtx ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } )

Proof

Step Hyp Ref Expression
1 nbgrssovtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 nbgrisvtx ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣𝑉 )
3 nbgrnself2 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 )
4 df-nel ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
5 neleq1 ( 𝑣 = 𝑋 → ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) )
6 4 5 bitr3id ( 𝑣 = 𝑋 → ( ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) )
7 3 6 mpbiri ( 𝑣 = 𝑋 → ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
8 7 necon2ai ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣𝑋 )
9 eldifsn ( 𝑣 ∈ ( 𝑉 ∖ { 𝑋 } ) ↔ ( 𝑣𝑉𝑣𝑋 ) )
10 2 8 9 sylanbrc ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ∈ ( 𝑉 ∖ { 𝑋 } ) )
11 10 ssriv ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } )