Metamath Proof Explorer


Theorem nbgrssovtx

Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself. Stronger version of nbgrssvtx . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)

Ref Expression
Hypothesis nbgrssovtx.v V = Vtx G
Assertion nbgrssovtx G NeighbVtx X V X

Proof

Step Hyp Ref Expression
1 nbgrssovtx.v V = Vtx G
2 1 nbgrisvtx v G NeighbVtx X v V
3 nbgrnself2 X G NeighbVtx X
4 df-nel v G NeighbVtx X ¬ v G NeighbVtx X
5 neleq1 v = X v G NeighbVtx X X G NeighbVtx X
6 4 5 bitr3id v = X ¬ v G NeighbVtx X X G NeighbVtx X
7 3 6 mpbiri v = X ¬ v G NeighbVtx X
8 7 necon2ai v G NeighbVtx X v X
9 eldifsn v V X v V v X
10 2 8 9 sylanbrc v G NeighbVtx X v V X
11 10 ssriv G NeighbVtx X V X