Metamath Proof Explorer


Theorem ncvspds

Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by AV, 13-Oct-2021)

Ref Expression
Hypotheses ncvspds.n
|- N = ( norm ` G )
ncvspds.x
|- X = ( Base ` G )
ncvspds.p
|- .+ = ( +g ` G )
ncvspds.d
|- D = ( dist ` G )
ncvspds.s
|- .x. = ( .s ` G )
Assertion ncvspds
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) )

Proof

Step Hyp Ref Expression
1 ncvspds.n
 |-  N = ( norm ` G )
2 ncvspds.x
 |-  X = ( Base ` G )
3 ncvspds.p
 |-  .+ = ( +g ` G )
4 ncvspds.d
 |-  D = ( dist ` G )
5 ncvspds.s
 |-  .x. = ( .s ` G )
6 elin
 |-  ( G e. ( NrmVec i^i CVec ) <-> ( G e. NrmVec /\ G e. CVec ) )
7 nvcnlm
 |-  ( G e. NrmVec -> G e. NrmMod )
8 nlmngp
 |-  ( G e. NrmMod -> G e. NrmGrp )
9 7 8 syl
 |-  ( G e. NrmVec -> G e. NrmGrp )
10 9 adantr
 |-  ( ( G e. NrmVec /\ G e. CVec ) -> G e. NrmGrp )
11 6 10 sylbi
 |-  ( G e. ( NrmVec i^i CVec ) -> G e. NrmGrp )
12 eqid
 |-  ( -g ` G ) = ( -g ` G )
13 1 2 12 4 ngpds
 |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -g ` G ) B ) ) )
14 11 13 syl3an1
 |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -g ` G ) B ) ) )
15 id
 |-  ( G e. CVec -> G e. CVec )
16 15 cvsclm
 |-  ( G e. CVec -> G e. CMod )
17 6 16 simplbiim
 |-  ( G e. ( NrmVec i^i CVec ) -> G e. CMod )
18 eqid
 |-  ( Scalar ` G ) = ( Scalar ` G )
19 2 3 12 18 5 clmvsubval
 |-  ( ( G e. CMod /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) B ) = ( A .+ ( -u 1 .x. B ) ) )
20 17 19 syl3an1
 |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) B ) = ( A .+ ( -u 1 .x. B ) ) )
21 20 fveq2d
 |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( N ` ( A ( -g ` G ) B ) ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) )
22 14 21 eqtrd
 |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) )