| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvspds.n |  |-  N = ( norm ` G ) | 
						
							| 2 |  | ncvspds.x |  |-  X = ( Base ` G ) | 
						
							| 3 |  | ncvspds.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | ncvspds.d |  |-  D = ( dist ` G ) | 
						
							| 5 |  | ncvspds.s |  |-  .x. = ( .s ` G ) | 
						
							| 6 |  | elin |  |-  ( G e. ( NrmVec i^i CVec ) <-> ( G e. NrmVec /\ G e. CVec ) ) | 
						
							| 7 |  | nvcnlm |  |-  ( G e. NrmVec -> G e. NrmMod ) | 
						
							| 8 |  | nlmngp |  |-  ( G e. NrmMod -> G e. NrmGrp ) | 
						
							| 9 | 7 8 | syl |  |-  ( G e. NrmVec -> G e. NrmGrp ) | 
						
							| 10 | 9 | adantr |  |-  ( ( G e. NrmVec /\ G e. CVec ) -> G e. NrmGrp ) | 
						
							| 11 | 6 10 | sylbi |  |-  ( G e. ( NrmVec i^i CVec ) -> G e. NrmGrp ) | 
						
							| 12 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 13 | 1 2 12 4 | ngpds |  |-  ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -g ` G ) B ) ) ) | 
						
							| 14 | 11 13 | syl3an1 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -g ` G ) B ) ) ) | 
						
							| 15 |  | id |  |-  ( G e. CVec -> G e. CVec ) | 
						
							| 16 | 15 | cvsclm |  |-  ( G e. CVec -> G e. CMod ) | 
						
							| 17 | 6 16 | simplbiim |  |-  ( G e. ( NrmVec i^i CVec ) -> G e. CMod ) | 
						
							| 18 |  | eqid |  |-  ( Scalar ` G ) = ( Scalar ` G ) | 
						
							| 19 | 2 3 12 18 5 | clmvsubval |  |-  ( ( G e. CMod /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) B ) = ( A .+ ( -u 1 .x. B ) ) ) | 
						
							| 20 | 17 19 | syl3an1 |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) B ) = ( A .+ ( -u 1 .x. B ) ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( N ` ( A ( -g ` G ) B ) ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) ) | 
						
							| 22 | 14 21 | eqtrd |  |-  ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) ) |