| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvspds.n |
|- N = ( norm ` G ) |
| 2 |
|
ncvspds.x |
|- X = ( Base ` G ) |
| 3 |
|
ncvspds.p |
|- .+ = ( +g ` G ) |
| 4 |
|
ncvspds.d |
|- D = ( dist ` G ) |
| 5 |
|
ncvspds.s |
|- .x. = ( .s ` G ) |
| 6 |
|
elin |
|- ( G e. ( NrmVec i^i CVec ) <-> ( G e. NrmVec /\ G e. CVec ) ) |
| 7 |
|
nvcnlm |
|- ( G e. NrmVec -> G e. NrmMod ) |
| 8 |
|
nlmngp |
|- ( G e. NrmMod -> G e. NrmGrp ) |
| 9 |
7 8
|
syl |
|- ( G e. NrmVec -> G e. NrmGrp ) |
| 10 |
9
|
adantr |
|- ( ( G e. NrmVec /\ G e. CVec ) -> G e. NrmGrp ) |
| 11 |
6 10
|
sylbi |
|- ( G e. ( NrmVec i^i CVec ) -> G e. NrmGrp ) |
| 12 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 13 |
1 2 12 4
|
ngpds |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -g ` G ) B ) ) ) |
| 14 |
11 13
|
syl3an1 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -g ` G ) B ) ) ) |
| 15 |
|
id |
|- ( G e. CVec -> G e. CVec ) |
| 16 |
15
|
cvsclm |
|- ( G e. CVec -> G e. CMod ) |
| 17 |
6 16
|
simplbiim |
|- ( G e. ( NrmVec i^i CVec ) -> G e. CMod ) |
| 18 |
|
eqid |
|- ( Scalar ` G ) = ( Scalar ` G ) |
| 19 |
2 3 12 18 5
|
clmvsubval |
|- ( ( G e. CMod /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) B ) = ( A .+ ( -u 1 .x. B ) ) ) |
| 20 |
17 19
|
syl3an1 |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A ( -g ` G ) B ) = ( A .+ ( -u 1 .x. B ) ) ) |
| 21 |
20
|
fveq2d |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( N ` ( A ( -g ` G ) B ) ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) ) |
| 22 |
14 21
|
eqtrd |
|- ( ( G e. ( NrmVec i^i CVec ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A .+ ( -u 1 .x. B ) ) ) ) |