Metamath Proof Explorer


Theorem ncvspds

Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by AV, 13-Oct-2021)

Ref Expression
Hypotheses ncvspds.n 𝑁 = ( norm ‘ 𝐺 )
ncvspds.x 𝑋 = ( Base ‘ 𝐺 )
ncvspds.p + = ( +g𝐺 )
ncvspds.d 𝐷 = ( dist ‘ 𝐺 )
ncvspds.s · = ( ·𝑠𝐺 )
Assertion ncvspds ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 ncvspds.n 𝑁 = ( norm ‘ 𝐺 )
2 ncvspds.x 𝑋 = ( Base ‘ 𝐺 )
3 ncvspds.p + = ( +g𝐺 )
4 ncvspds.d 𝐷 = ( dist ‘ 𝐺 )
5 ncvspds.s · = ( ·𝑠𝐺 )
6 elin ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec ) )
7 nvcnlm ( 𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod )
8 nlmngp ( 𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp )
9 7 8 syl ( 𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp )
10 9 adantr ( ( 𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec ) → 𝐺 ∈ NrmGrp )
11 6 10 sylbi ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) → 𝐺 ∈ NrmGrp )
12 eqid ( -g𝐺 ) = ( -g𝐺 )
13 1 2 12 4 ngpds ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( -g𝐺 ) 𝐵 ) ) )
14 11 13 syl3an1 ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( -g𝐺 ) 𝐵 ) ) )
15 id ( 𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec )
16 15 cvsclm ( 𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod )
17 6 16 simplbiim ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) → 𝐺 ∈ ℂMod )
18 eqid ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 )
19 2 3 12 18 5 clmvsubval ( ( 𝐺 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( -g𝐺 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
20 17 19 syl3an1 ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( -g𝐺 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) )
21 20 fveq2d ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g𝐺 ) 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) )
22 14 21 eqtrd ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) )