| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ncvspds.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
| 2 |
|
ncvspds.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
ncvspds.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
ncvspds.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
| 5 |
|
ncvspds.s |
⊢ · = ( ·𝑠 ‘ 𝐺 ) |
| 6 |
|
elin |
⊢ ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec ) ) |
| 7 |
|
nvcnlm |
⊢ ( 𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod ) |
| 8 |
|
nlmngp |
⊢ ( 𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec ) → 𝐺 ∈ NrmGrp ) |
| 11 |
6 10
|
sylbi |
⊢ ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) → 𝐺 ∈ NrmGrp ) |
| 12 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 13 |
1 2 12 4
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 14 |
11 13
|
syl3an1 |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
| 15 |
|
id |
⊢ ( 𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec ) |
| 16 |
15
|
cvsclm |
⊢ ( 𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod ) |
| 17 |
6 16
|
simplbiim |
⊢ ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) → 𝐺 ∈ ℂMod ) |
| 18 |
|
eqid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) |
| 19 |
2 3 12 18 5
|
clmvsubval |
⊢ ( ( 𝐺 ∈ ℂMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 20 |
17 19
|
syl3an1 |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) ) |
| 22 |
14 21
|
eqtrd |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) ) |