| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ncvspds.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 2 |  | ncvspds.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | ncvspds.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | ncvspds.d | ⊢ 𝐷  =  ( dist ‘ 𝐺 ) | 
						
							| 5 |  | ncvspds.s | ⊢  ·   =  (  ·𝑠  ‘ 𝐺 ) | 
						
							| 6 |  | elin | ⊢ ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  ↔  ( 𝐺  ∈  NrmVec  ∧  𝐺  ∈  ℂVec ) ) | 
						
							| 7 |  | nvcnlm | ⊢ ( 𝐺  ∈  NrmVec  →  𝐺  ∈  NrmMod ) | 
						
							| 8 |  | nlmngp | ⊢ ( 𝐺  ∈  NrmMod  →  𝐺  ∈  NrmGrp ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐺  ∈  NrmVec  →  𝐺  ∈  NrmGrp ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐺  ∈  NrmVec  ∧  𝐺  ∈  ℂVec )  →  𝐺  ∈  NrmGrp ) | 
						
							| 11 | 6 10 | sylbi | ⊢ ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  →  𝐺  ∈  NrmGrp ) | 
						
							| 12 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 13 | 1 2 12 4 | ngpds | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 14 | 11 13 | syl3an1 | ⊢ ( ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) | 
						
							| 15 |  | id | ⊢ ( 𝐺  ∈  ℂVec  →  𝐺  ∈  ℂVec ) | 
						
							| 16 | 15 | cvsclm | ⊢ ( 𝐺  ∈  ℂVec  →  𝐺  ∈  ℂMod ) | 
						
							| 17 | 6 16 | simplbiim | ⊢ ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  →  𝐺  ∈  ℂMod ) | 
						
							| 18 |  | eqid | ⊢ ( Scalar ‘ 𝐺 )  =  ( Scalar ‘ 𝐺 ) | 
						
							| 19 | 2 3 12 18 5 | clmvsubval | ⊢ ( ( 𝐺  ∈  ℂMod  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 )  =  ( 𝐴  +  ( - 1  ·  𝐵 ) ) ) | 
						
							| 20 | 17 19 | syl3an1 | ⊢ ( ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 )  =  ( 𝐴  +  ( - 1  ·  𝐵 ) ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) )  =  ( 𝑁 ‘ ( 𝐴  +  ( - 1  ·  𝐵 ) ) ) ) | 
						
							| 22 | 14 21 | eqtrd | ⊢ ( ( 𝐺  ∈  ( NrmVec  ∩  ℂVec )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝑁 ‘ ( 𝐴  +  ( - 1  ·  𝐵 ) ) ) ) |