Step |
Hyp |
Ref |
Expression |
1 |
|
ncvspds.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
2 |
|
ncvspds.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
ncvspds.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
ncvspds.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
5 |
|
ncvspds.s |
⊢ · = ( ·𝑠 ‘ 𝐺 ) |
6 |
|
elin |
⊢ ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ↔ ( 𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec ) ) |
7 |
|
nvcnlm |
⊢ ( 𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod ) |
8 |
|
nlmngp |
⊢ ( 𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp ) |
9 |
7 8
|
syl |
⊢ ( 𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp ) |
10 |
9
|
adantr |
⊢ ( ( 𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec ) → 𝐺 ∈ NrmGrp ) |
11 |
6 10
|
sylbi |
⊢ ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) → 𝐺 ∈ NrmGrp ) |
12 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
13 |
1 2 12 4
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
14 |
11 13
|
syl3an1 |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) ) |
15 |
|
id |
⊢ ( 𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec ) |
16 |
15
|
cvsclm |
⊢ ( 𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod ) |
17 |
6 16
|
simplbiim |
⊢ ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) → 𝐺 ∈ ℂMod ) |
18 |
|
eqid |
⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐺 ) |
19 |
2 3 12 18 5
|
clmvsubval |
⊢ ( ( 𝐺 ∈ ℂMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
20 |
17 19
|
syl3an1 |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) 𝐵 ) ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) ) |
22 |
14 21
|
eqtrd |
⊢ ( ( 𝐺 ∈ ( NrmVec ∩ ℂVec ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑁 ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) ) |