| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelsubginvcld.g |  |-  ( ph -> G e. Grp ) | 
						
							| 2 |  | nelsubginvcld.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | nelsubginvcld.x |  |-  ( ph -> X e. ( B \ S ) ) | 
						
							| 4 |  | nelsubginvcld.b |  |-  B = ( Base ` G ) | 
						
							| 5 |  | nelsubgcld.y |  |-  ( ph -> Y e. S ) | 
						
							| 6 |  | nelsubgsubcld.p |  |-  .- = ( -g ` G ) | 
						
							| 7 | 3 | eldifad |  |-  ( ph -> X e. B ) | 
						
							| 8 | 4 | subgss |  |-  ( S e. ( SubGrp ` G ) -> S C_ B ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> S C_ B ) | 
						
							| 10 | 9 5 | sseldd |  |-  ( ph -> Y e. B ) | 
						
							| 11 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 12 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 13 | 4 11 12 6 | grpsubval |  |-  ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) | 
						
							| 14 | 7 10 13 | syl2anc |  |-  ( ph -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) | 
						
							| 15 | 12 | subginvcl |  |-  ( ( S e. ( SubGrp ` G ) /\ Y e. S ) -> ( ( invg ` G ) ` Y ) e. S ) | 
						
							| 16 | 2 5 15 | syl2anc |  |-  ( ph -> ( ( invg ` G ) ` Y ) e. S ) | 
						
							| 17 | 1 2 3 4 16 11 | nelsubgcld |  |-  ( ph -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) e. ( B \ S ) ) | 
						
							| 18 | 14 17 | eqeltrd |  |-  ( ph -> ( X .- Y ) e. ( B \ S ) ) |