Metamath Proof Explorer


Theorem nelsubgsubcld

Description: A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g φ G Grp
nelsubginvcld.s φ S SubGrp G
nelsubginvcld.x φ X B S
nelsubginvcld.b B = Base G
nelsubgcld.y φ Y S
nelsubgsubcld.p - ˙ = - G
Assertion nelsubgsubcld φ X - ˙ Y B S

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g φ G Grp
2 nelsubginvcld.s φ S SubGrp G
3 nelsubginvcld.x φ X B S
4 nelsubginvcld.b B = Base G
5 nelsubgcld.y φ Y S
6 nelsubgsubcld.p - ˙ = - G
7 3 eldifad φ X B
8 4 subgss S SubGrp G S B
9 2 8 syl φ S B
10 9 5 sseldd φ Y B
11 eqid + G = + G
12 eqid inv g G = inv g G
13 4 11 12 6 grpsubval X B Y B X - ˙ Y = X + G inv g G Y
14 7 10 13 syl2anc φ X - ˙ Y = X + G inv g G Y
15 12 subginvcl S SubGrp G Y S inv g G Y S
16 2 5 15 syl2anc φ inv g G Y S
17 1 2 3 4 16 11 nelsubgcld φ X + G inv g G Y B S
18 14 17 eqeltrd φ X - ˙ Y B S