Metamath Proof Explorer


Theorem nelsubgcld

Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g φGGrp
nelsubginvcld.s φSSubGrpG
nelsubginvcld.x φXBS
nelsubginvcld.b B=BaseG
nelsubgcld.y φYS
nelsubgcld.p +˙=+G
Assertion nelsubgcld φX+˙YBS

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g φGGrp
2 nelsubginvcld.s φSSubGrpG
3 nelsubginvcld.x φXBS
4 nelsubginvcld.b B=BaseG
5 nelsubgcld.y φYS
6 nelsubgcld.p +˙=+G
7 3 eldifad φXB
8 4 subgss SSubGrpGSB
9 2 8 syl φSB
10 9 5 sseldd φYB
11 4 6 grpcl GGrpXBYBX+˙YB
12 1 7 10 11 syl3anc φX+˙YB
13 3 eldifbd φ¬XS
14 eqid -G=-G
15 4 6 14 grppncan GGrpXBYBX+˙Y-GY=X
16 1 7 10 15 syl3anc φX+˙Y-GY=X
17 16 adantr φX+˙YSX+˙Y-GY=X
18 2 adantr φX+˙YSSSubGrpG
19 simpr φX+˙YSX+˙YS
20 5 adantr φX+˙YSYS
21 14 subgsubcl SSubGrpGX+˙YSYSX+˙Y-GYS
22 18 19 20 21 syl3anc φX+˙YSX+˙Y-GYS
23 17 22 eqeltrrd φX+˙YSXS
24 13 23 mtand φ¬X+˙YS
25 12 24 eldifd φX+˙YBS