Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nelsubginvcld.g | |
|
nelsubginvcld.s | |
||
nelsubginvcld.x | |
||
nelsubginvcld.b | |
||
nelsubgcld.y | |
||
nelsubgcld.p | |
||
Assertion | nelsubgcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelsubginvcld.g | |
|
2 | nelsubginvcld.s | |
|
3 | nelsubginvcld.x | |
|
4 | nelsubginvcld.b | |
|
5 | nelsubgcld.y | |
|
6 | nelsubgcld.p | |
|
7 | 3 | eldifad | |
8 | 4 | subgss | |
9 | 2 8 | syl | |
10 | 9 5 | sseldd | |
11 | 4 6 | grpcl | |
12 | 1 7 10 11 | syl3anc | |
13 | 3 | eldifbd | |
14 | eqid | |
|
15 | 4 6 14 | grppncan | |
16 | 1 7 10 15 | syl3anc | |
17 | 16 | adantr | |
18 | 2 | adantr | |
19 | simpr | |
|
20 | 5 | adantr | |
21 | 14 | subgsubcl | |
22 | 18 19 20 21 | syl3anc | |
23 | 17 22 | eqeltrrd | |
24 | 13 23 | mtand | |
25 | 12 24 | eldifd | |