Metamath Proof Explorer


Theorem nelsubgcld

Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g ( 𝜑𝐺 ∈ Grp )
nelsubginvcld.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
nelsubginvcld.x ( 𝜑𝑋 ∈ ( 𝐵𝑆 ) )
nelsubginvcld.b 𝐵 = ( Base ‘ 𝐺 )
nelsubgcld.y ( 𝜑𝑌𝑆 )
nelsubgcld.p + = ( +g𝐺 )
Assertion nelsubgcld ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐵𝑆 ) )

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g ( 𝜑𝐺 ∈ Grp )
2 nelsubginvcld.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
3 nelsubginvcld.x ( 𝜑𝑋 ∈ ( 𝐵𝑆 ) )
4 nelsubginvcld.b 𝐵 = ( Base ‘ 𝐺 )
5 nelsubgcld.y ( 𝜑𝑌𝑆 )
6 nelsubgcld.p + = ( +g𝐺 )
7 3 eldifad ( 𝜑𝑋𝐵 )
8 4 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆𝐵 )
9 2 8 syl ( 𝜑𝑆𝐵 )
10 9 5 sseldd ( 𝜑𝑌𝐵 )
11 4 6 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
12 1 7 10 11 syl3anc ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
13 3 eldifbd ( 𝜑 → ¬ 𝑋𝑆 )
14 eqid ( -g𝐺 ) = ( -g𝐺 )
15 4 6 14 grppncan ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 + 𝑌 ) ( -g𝐺 ) 𝑌 ) = 𝑋 )
16 1 7 10 15 syl3anc ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g𝐺 ) 𝑌 ) = 𝑋 )
17 16 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) ( -g𝐺 ) 𝑌 ) = 𝑋 )
18 2 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
19 simpr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
20 5 adantr ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → 𝑌𝑆 )
21 14 subgsubcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆𝑌𝑆 ) → ( ( 𝑋 + 𝑌 ) ( -g𝐺 ) 𝑌 ) ∈ 𝑆 )
22 18 19 20 21 syl3anc ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) ( -g𝐺 ) 𝑌 ) ∈ 𝑆 )
23 17 22 eqeltrrd ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → 𝑋𝑆 )
24 13 23 mtand ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑆 )
25 12 24 eldifd ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐵𝑆 ) )