Step |
Hyp |
Ref |
Expression |
1 |
|
nelsubginvcld.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
2 |
|
nelsubginvcld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
nelsubginvcld.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ 𝑆 ) ) |
4 |
|
nelsubginvcld.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
5 |
|
nelsubgcld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
6 |
|
nelsubgcld.p |
⊢ + = ( +g ‘ 𝐺 ) |
7 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
4
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
10 |
9 5
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
11 |
4 6
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
12 |
1 7 10 11
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
13 |
3
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑆 ) |
14 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
15 |
4 6 14
|
grppncan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝐺 ) 𝑌 ) = 𝑋 ) |
16 |
1 7 10 15
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝐺 ) 𝑌 ) = 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝐺 ) 𝑌 ) = 𝑋 ) |
18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) |
21 |
14
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝐺 ) 𝑌 ) ∈ 𝑆 ) |
22 |
18 19 20 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝐺 ) 𝑌 ) ∈ 𝑆 ) |
23 |
17 22
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
24 |
13 23
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑆 ) |
25 |
12 24
|
eldifd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐵 ∖ 𝑆 ) ) |