| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelsubginvcld.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 2 |  | nelsubginvcld.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | nelsubginvcld.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ∖  𝑆 ) ) | 
						
							| 4 |  | nelsubginvcld.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | nelsubgcld.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑆 ) | 
						
							| 6 |  | nelsubgcld.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 7 | 3 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 | 4 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 10 | 9 5 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 11 | 4 6 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 12 | 1 7 10 11 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  𝐵 ) | 
						
							| 13 | 3 | eldifbd | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑆 ) | 
						
							| 14 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 15 | 4 6 14 | grppncan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝐺 ) 𝑌 )  =  𝑋 ) | 
						
							| 16 | 1 7 10 15 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝐺 ) 𝑌 )  =  𝑋 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝐺 ) 𝑌 )  =  𝑋 ) | 
						
							| 18 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆 )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆 )  →  ( 𝑋  +  𝑌 )  ∈  𝑆 ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆 )  →  𝑌  ∈  𝑆 ) | 
						
							| 21 | 14 | subgsubcl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝐺 ) 𝑌 )  ∈  𝑆 ) | 
						
							| 22 | 18 19 20 21 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆 )  →  ( ( 𝑋  +  𝑌 ) ( -g ‘ 𝐺 ) 𝑌 )  ∈  𝑆 ) | 
						
							| 23 | 17 22 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑋  +  𝑌 )  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 24 | 13 23 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝑋  +  𝑌 )  ∈  𝑆 ) | 
						
							| 25 | 12 24 | eldifd | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  ∈  ( 𝐵  ∖  𝑆 ) ) |