Step |
Hyp |
Ref |
Expression |
1 |
|
nelsubginvcld.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
2 |
|
nelsubginvcld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
3 |
|
nelsubginvcld.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ 𝑆 ) ) |
4 |
|
nelsubginvcld.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
5 |
|
nelsubgcld.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
6 |
|
nelsubgsubcld.p |
⊢ − = ( -g ‘ 𝐺 ) |
7 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
4
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
10 |
9 5
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
13 |
4 11 12 6
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
14 |
7 10 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
15 |
12
|
subginvcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑆 ) |
16 |
2 5 15
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑆 ) |
17 |
1 2 3 4 16 11
|
nelsubgcld |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ ( 𝐵 ∖ 𝑆 ) ) |
18 |
14 17
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝐵 ∖ 𝑆 ) ) |