| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nelsubginvcld.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 2 |  | nelsubginvcld.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | nelsubginvcld.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ∖  𝑆 ) ) | 
						
							| 4 |  | nelsubginvcld.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | nelsubgcld.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑆 ) | 
						
							| 6 |  | nelsubgsubcld.p | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 | 3 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 | 4 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 10 | 9 5 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 12 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 13 | 4 11 12 6 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 14 | 7 10 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  =  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 15 | 12 | subginvcl | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑌  ∈  𝑆 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝑆 ) | 
						
							| 16 | 2 5 15 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  ∈  𝑆 ) | 
						
							| 17 | 1 2 3 4 16 11 | nelsubgcld | ⊢ ( 𝜑  →  ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  ∈  ( 𝐵  ∖  𝑆 ) ) | 
						
							| 18 | 14 17 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  ∈  ( 𝐵  ∖  𝑆 ) ) |