Metamath Proof Explorer


Theorem nelsubgsubcld

Description: A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses nelsubginvcld.g ( 𝜑𝐺 ∈ Grp )
nelsubginvcld.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
nelsubginvcld.x ( 𝜑𝑋 ∈ ( 𝐵𝑆 ) )
nelsubginvcld.b 𝐵 = ( Base ‘ 𝐺 )
nelsubgcld.y ( 𝜑𝑌𝑆 )
nelsubgsubcld.p = ( -g𝐺 )
Assertion nelsubgsubcld ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( 𝐵𝑆 ) )

Proof

Step Hyp Ref Expression
1 nelsubginvcld.g ( 𝜑𝐺 ∈ Grp )
2 nelsubginvcld.s ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
3 nelsubginvcld.x ( 𝜑𝑋 ∈ ( 𝐵𝑆 ) )
4 nelsubginvcld.b 𝐵 = ( Base ‘ 𝐺 )
5 nelsubgcld.y ( 𝜑𝑌𝑆 )
6 nelsubgsubcld.p = ( -g𝐺 )
7 3 eldifad ( 𝜑𝑋𝐵 )
8 4 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆𝐵 )
9 2 8 syl ( 𝜑𝑆𝐵 )
10 9 5 sseldd ( 𝜑𝑌𝐵 )
11 eqid ( +g𝐺 ) = ( +g𝐺 )
12 eqid ( invg𝐺 ) = ( invg𝐺 )
13 4 11 12 6 grpsubval ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
14 7 10 13 syl2anc ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
15 12 subginvcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌𝑆 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑆 )
16 2 5 15 syl2anc ( 𝜑 → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑆 )
17 1 2 3 4 16 11 nelsubgcld ( 𝜑 → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ∈ ( 𝐵𝑆 ) )
18 14 17 eqeltrd ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( 𝐵𝑆 ) )