Step |
Hyp |
Ref |
Expression |
1 |
|
rnasclg.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
rnasclg.o |
⊢ 1 = ( 1r ‘ 𝑊 ) |
3 |
|
rnasclg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
7 |
1 4 5 6 2
|
asclfval |
⊢ 𝐴 = ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
8 |
7
|
rnmpt |
⊢ ran 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } |
9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
10 |
9 2
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → 1 ∈ ( Base ‘ 𝑊 ) ) |
11 |
4 5 9 6 3
|
lspsn |
⊢ ( ( 𝑊 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } ) |
12 |
10 11
|
sylan2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 1 ) } ) |
13 |
8 12
|
eqtr4id |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) → ran 𝐴 = ( 𝑁 ‘ { 1 } ) ) |