Metamath Proof Explorer


Theorem rnasclg

Description: The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses rnasclg.a A = algSc W
rnasclg.o 1 ˙ = 1 W
rnasclg.n N = LSpan W
Assertion rnasclg W LMod W Ring ran A = N 1 ˙

Proof

Step Hyp Ref Expression
1 rnasclg.a A = algSc W
2 rnasclg.o 1 ˙ = 1 W
3 rnasclg.n N = LSpan W
4 eqid Scalar W = Scalar W
5 eqid Base Scalar W = Base Scalar W
6 eqid W = W
7 1 4 5 6 2 asclfval A = y Base Scalar W y W 1 ˙
8 7 rnmpt ran A = x | y Base Scalar W x = y W 1 ˙
9 eqid Base W = Base W
10 9 2 ringidcl W Ring 1 ˙ Base W
11 4 5 9 6 3 lspsn W LMod 1 ˙ Base W N 1 ˙ = x | y Base Scalar W x = y W 1 ˙
12 10 11 sylan2 W LMod W Ring N 1 ˙ = x | y Base Scalar W x = y W 1 ˙
13 8 12 eqtr4id W LMod W Ring ran A = N 1 ˙