Metamath Proof Explorer


Theorem nfintd

Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypothesis nfintd.1
|- ( ph -> F/_ x A )
Assertion nfintd
|- ( ph -> F/_ x |^| A )

Proof

Step Hyp Ref Expression
1 nfintd.1
 |-  ( ph -> F/_ x A )
2 df-int
 |-  |^| A = { y | A. z ( z e. A -> y e. z ) }
3 nfv
 |-  F/ y ph
4 nfv
 |-  F/ z ph
5 1 nfcrd
 |-  ( ph -> F/ x z e. A )
6 nfv
 |-  F/ x y e. z
7 6 a1i
 |-  ( ph -> F/ x y e. z )
8 5 7 nfimd
 |-  ( ph -> F/ x ( z e. A -> y e. z ) )
9 4 8 nfald
 |-  ( ph -> F/ x A. z ( z e. A -> y e. z ) )
10 3 9 nfabdw
 |-  ( ph -> F/_ x { y | A. z ( z e. A -> y e. z ) } )
11 2 10 nfcxfrd
 |-  ( ph -> F/_ x |^| A )