Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfintd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
Assertion | nfintd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∩ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfintd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
2 | df-int | ⊢ ∩ 𝐴 = { 𝑦 ∣ ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧 ) } | |
3 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
5 | 1 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑧 ∈ 𝐴 ) |
6 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝑧 | |
7 | 6 | a1i | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝑧 ) |
8 | 5 7 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧 ) ) |
9 | 4 8 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧 ) ) |
10 | 3 9 | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑧 ( 𝑧 ∈ 𝐴 → 𝑦 ∈ 𝑧 ) } ) |
11 | 2 10 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∩ 𝐴 ) |