Metamath Proof Explorer


Theorem nfintd

Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypothesis nfintd.1 ( 𝜑 𝑥 𝐴 )
Assertion nfintd ( 𝜑 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 nfintd.1 ( 𝜑 𝑥 𝐴 )
2 df-int 𝐴 = { 𝑦 ∣ ∀ 𝑧 ( 𝑧𝐴𝑦𝑧 ) }
3 nfv 𝑦 𝜑
4 nfv 𝑧 𝜑
5 1 nfcrd ( 𝜑 → Ⅎ 𝑥 𝑧𝐴 )
6 nfv 𝑥 𝑦𝑧
7 6 a1i ( 𝜑 → Ⅎ 𝑥 𝑦𝑧 )
8 5 7 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝑧𝐴𝑦𝑧 ) )
9 4 8 nfald ( 𝜑 → Ⅎ 𝑥𝑧 ( 𝑧𝐴𝑦𝑧 ) )
10 3 9 nfabdw ( 𝜑 𝑥 { 𝑦 ∣ ∀ 𝑧 ( 𝑧𝐴𝑦𝑧 ) } )
11 2 10 nfcxfrd ( 𝜑 𝑥 𝐴 )