Metamath Proof Explorer


Theorem nfintd

Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypothesis nfintd.1 φ _ x A
Assertion nfintd φ _ x A

Proof

Step Hyp Ref Expression
1 nfintd.1 φ _ x A
2 df-int A = y | z z A y z
3 nfv y φ
4 nfv z φ
5 1 nfcrd φ x z A
6 nfv x y z
7 6 a1i φ x y z
8 5 7 nfimd φ x z A y z
9 4 8 nfald φ x z z A y z
10 3 9 nfabdw φ _ x y | z z A y z
11 2 10 nfcxfrd φ _ x A