| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmlnogt0.3 |
|- N = ( U normOpOLD W ) |
| 2 |
|
nmlnogt0.0 |
|- Z = ( U 0op W ) |
| 3 |
|
nmlnogt0.7 |
|- L = ( U LnOp W ) |
| 4 |
1 2 3
|
nmlno0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) = 0 <-> T = Z ) ) |
| 5 |
4
|
necon3bid |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) =/= 0 <-> T =/= Z ) ) |
| 6 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
| 7 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
| 8 |
6 7 3
|
lnof |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) |
| 9 |
6 7 1
|
nmoxr |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( N ` T ) e. RR* ) |
| 10 |
6 7 1
|
nmooge0 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> 0 <_ ( N ` T ) ) |
| 11 |
|
0xr |
|- 0 e. RR* |
| 12 |
|
xrlttri2 |
|- ( ( ( N ` T ) e. RR* /\ 0 e. RR* ) -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 13 |
11 12
|
mpan2 |
|- ( ( N ` T ) e. RR* -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 14 |
13
|
adantr |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( ( N ` T ) =/= 0 <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 15 |
|
xrlenlt |
|- ( ( 0 e. RR* /\ ( N ` T ) e. RR* ) -> ( 0 <_ ( N ` T ) <-> -. ( N ` T ) < 0 ) ) |
| 16 |
11 15
|
mpan |
|- ( ( N ` T ) e. RR* -> ( 0 <_ ( N ` T ) <-> -. ( N ` T ) < 0 ) ) |
| 17 |
16
|
biimpa |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> -. ( N ` T ) < 0 ) |
| 18 |
|
biorf |
|- ( -. ( N ` T ) < 0 -> ( 0 < ( N ` T ) <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( 0 < ( N ` T ) <-> ( ( N ` T ) < 0 \/ 0 < ( N ` T ) ) ) ) |
| 20 |
14 19
|
bitr4d |
|- ( ( ( N ` T ) e. RR* /\ 0 <_ ( N ` T ) ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
| 21 |
9 10 20
|
syl2anc |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : ( BaseSet ` U ) --> ( BaseSet ` W ) ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
| 22 |
8 21
|
syld3an3 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( N ` T ) =/= 0 <-> 0 < ( N ` T ) ) ) |
| 23 |
5 22
|
bitr3d |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T =/= Z <-> 0 < ( N ` T ) ) ) |