| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
| 2 |
|
nmofval.2 |
|- V = ( Base ` S ) |
| 3 |
|
nmofval.3 |
|- L = ( norm ` S ) |
| 4 |
|
nmofval.4 |
|- M = ( norm ` T ) |
| 5 |
|
oveq12 |
|- ( ( s = S /\ t = T ) -> ( s GrpHom t ) = ( S GrpHom T ) ) |
| 6 |
|
simpl |
|- ( ( s = S /\ t = T ) -> s = S ) |
| 7 |
6
|
fveq2d |
|- ( ( s = S /\ t = T ) -> ( Base ` s ) = ( Base ` S ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( ( s = S /\ t = T ) -> ( Base ` s ) = V ) |
| 9 |
|
simpr |
|- ( ( s = S /\ t = T ) -> t = T ) |
| 10 |
9
|
fveq2d |
|- ( ( s = S /\ t = T ) -> ( norm ` t ) = ( norm ` T ) ) |
| 11 |
10 4
|
eqtr4di |
|- ( ( s = S /\ t = T ) -> ( norm ` t ) = M ) |
| 12 |
11
|
fveq1d |
|- ( ( s = S /\ t = T ) -> ( ( norm ` t ) ` ( f ` x ) ) = ( M ` ( f ` x ) ) ) |
| 13 |
6
|
fveq2d |
|- ( ( s = S /\ t = T ) -> ( norm ` s ) = ( norm ` S ) ) |
| 14 |
13 3
|
eqtr4di |
|- ( ( s = S /\ t = T ) -> ( norm ` s ) = L ) |
| 15 |
14
|
fveq1d |
|- ( ( s = S /\ t = T ) -> ( ( norm ` s ) ` x ) = ( L ` x ) ) |
| 16 |
15
|
oveq2d |
|- ( ( s = S /\ t = T ) -> ( r x. ( ( norm ` s ) ` x ) ) = ( r x. ( L ` x ) ) ) |
| 17 |
12 16
|
breq12d |
|- ( ( s = S /\ t = T ) -> ( ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) <-> ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) ) ) |
| 18 |
8 17
|
raleqbidv |
|- ( ( s = S /\ t = T ) -> ( A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) <-> A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) ) ) |
| 19 |
18
|
rabbidv |
|- ( ( s = S /\ t = T ) -> { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } = { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } ) |
| 20 |
19
|
infeq1d |
|- ( ( s = S /\ t = T ) -> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) = inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) |
| 21 |
5 20
|
mpteq12dv |
|- ( ( s = S /\ t = T ) -> ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) = ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) ) |
| 22 |
|
df-nmo |
|- normOp = ( s e. NrmGrp , t e. NrmGrp |-> ( f e. ( s GrpHom t ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. ( Base ` s ) ( ( norm ` t ) ` ( f ` x ) ) <_ ( r x. ( ( norm ` s ) ` x ) ) } , RR* , < ) ) ) |
| 23 |
|
eqid |
|- ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) = ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) |
| 24 |
|
ssrab2 |
|- { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } C_ ( 0 [,) +oo ) |
| 25 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 26 |
24 25
|
sstri |
|- { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } C_ RR* |
| 27 |
|
infxrcl |
|- ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } C_ RR* -> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) e. RR* ) |
| 28 |
26 27
|
mp1i |
|- ( f e. ( S GrpHom T ) -> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) e. RR* ) |
| 29 |
23 28
|
fmpti |
|- ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) : ( S GrpHom T ) --> RR* |
| 30 |
|
ovex |
|- ( S GrpHom T ) e. _V |
| 31 |
|
xrex |
|- RR* e. _V |
| 32 |
|
fex2 |
|- ( ( ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) : ( S GrpHom T ) --> RR* /\ ( S GrpHom T ) e. _V /\ RR* e. _V ) -> ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) e. _V ) |
| 33 |
29 30 31 32
|
mp3an |
|- ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) e. _V |
| 34 |
21 22 33
|
ovmpoa |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S normOp T ) = ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) ) |
| 35 |
1 34
|
eqtrid |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> N = ( f e. ( S GrpHom T ) |-> inf ( { r e. ( 0 [,) +oo ) | A. x e. V ( M ` ( f ` x ) ) <_ ( r x. ( L ` x ) ) } , RR* , < ) ) ) |